绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇节点设计论文范文,希望它们能为您的写作提供参考和启发。
平沙落雁及延伸段是兰州市南滨河路重要的交通节点改造工程,是进出兰州市以及连接市区各路段重要的枢纽通道之一。北侧紧邻黄河,是人们休闲、娱乐、旅游观光的重要区段。是兰州市黄河风情线重要的组成部分,具有兰州“外滩”的美名。道路沿线有许多非常有名的旅游景点,是兰州市人民引以自豪的生态路、景观路。也是兰州市每年举行大型国际“马拉松”赛事的重要比赛场地。具有很高的使用价值和观赏价值,是兰州市迈出国门,走向世界的重要的宣传窗口。城市景观照明设计是利用灯光的照明效果塑造城市的夜间形象,通过对山水、江河、道路、桥梁、广场、建筑物、构筑物、园林、雕塑、小品、历史文化古迹和遗址等诸多具体景观的照明设计,丰富城市的空间感和动态感。科学而合理的景观照明设计,是解决平沙落雁及延伸段交通节点改造工程夜间照明朝着巩固、完善、提高等方面发展的关键因素,是形成一幅和谐、优美、宁静的夜景画面的基础,是景观照明设计前提,是实现兰州市景观照明系统化、实现兰州市景观照明灯光建设可持续发展的决定因素。
(二)指导思想
景观照明是通过人为的设计和创作,让其在灯光作用下显得更有艺术感,或者说更加有美感,让普通的夜晚弥漫出不一样的文化气息。平沙落雁交通节点工程是兰州市“畅交通”工作中的重要组成部分,该工程效地改善兰州市交通环境,缓解城市环境污染,提升城市品位,带动兰州市的经济发展。平沙落雁景观照明以“景观、文化、生态、绿色”为主旋律,将与南滨河风情线、兰州水车园、历史人文雕塑相得益彰,有利于提升主城区城市品牌形象,对打造特色景点、品牌旅游有着重要作用。
(三)技术亮点
平沙落雁及延伸段交通节点改造工程新建城市高架与原有路段连接,路况复杂多变,属于城市道路的高危路段。本项目照明工程采用新型钢管护栏灯具有效的解决了高杆/低杆照明引起的安装维护不方便、抗台风差、对周围居民造成严重的光污染等问题。新型钢管护栏灯实现了路面照明,又成为城市夜景中一道独特的风景,其亮灯形成的近线性灯带对驾驶员还有良好的路型诱导作用,保障了驾驶员与乘客的安全。有机地将道路照明功能、景观照明功能、护栏防撞功能合三为一。新型护栏灯采用LED光源,耗电量较小,可大幅度降低电费50%左右。LED灯具环保效果较好,LED灯具中不含汞和氙等有害元素,利于回收和利用,而且不会产生电磁干扰普通灯管中含有汞和铅等元素,这些都是对人体有害的物质。而道路照明采用的高压钠灯中的电子镇流器会产生电磁干扰,影响其他电器的正常运作,长时间的电磁干扰也会对人体健康造成一定影响。
二、景观绿化设计
(一)城市道路景观绿化设计
结合城市道路环境特点、工程特点、构造物分布与选形、路基断面布设形式及景观规划定位等因素,确定如下城市道路景观设计内容:
1.人行道景观。根据沿线用地性质不同进行有区别的设计。结合地面道路及高架桥的空间形态,景观打造以开敞式为主,让沿线的景致和景深成为一道优美风景线。其中行道树设计应注重树形及分支点的选择,体现高大挺拔。主要树种选择有大叶香樟、银杏等。
2.分车带绿化。分车带设计注重简洁通透,以时令草花、修剪整形灌木和球类植物为主,展现沿线道路的整洁大气,注重桥下植物耐阴性的选择。
3.节点景观。节点景观设计应将建筑、场地、绿化结合,统一考虑,打造富有特色的现代城市景观,并注重与地块现有景观的衔接与融合,复铺装则延续原有地块的铺装形式。
4.环境小品。灯饰、椅、凳、桌、花盆、花池、花架、标识牌、护栏以及亭、廊、雕塑等以精美灵巧的造型来点缀空间,起到画龙点睛的作用。如北滨河路黄河风情线上不同路段布置了风格各异的小品雕塑并精心配制灯饰,形成了一系列既相互独立,又协调统一的游憩空间。5.绿化树种选择。针对兰州市地处高海拔严寒地区,气候干燥,降水少、蒸发强烈常年干旱少雨的地理气候特点,在植物配置上以适宜兰州市气候、土质的常绿树种如:侧柏、针叶松、黄杨等为基调树种,保持一年四季绿意盎然的景观效果,适当搭配一些开花有色树种如:红花紫荆,榆叶梅、月棘等,让兰州市黄河风情线更富生机。
(二)城市桥梁景观设计
在保证结构强度的前提下,追求的是流线畅舒展的总体线型和自然的曲线。桥梁的夜景亮化综合采用泛光照明、LED点状照明和带状照明营造炫丽多彩的桥梁夜景效果。在高架桥两侧防撞墙外侧设置花槽,种植景观植物,增加绿化率。高架桥立柱下种植爬藤植物,为垂直绿化的生长提供空间。
(三)地下人行通道桥景观设计
静宁路十字路口北侧与东侧、金昌路十字路口西侧与北侧路口、平沙落雁西侧(原通道加长)、南滨河路、读者大道、平凉路北口处人流量较大,需要设置地下人行通道解决行人横向同行问题,分别设1~5m的通道桥,净宽5.0m,通道两侧设人行梯道。
1.安全性。安全性是地下通道环境设计的基础和前提,结构计算、抗震设计、地下通道防排水设计、照明设计等安全可靠。通道内部和出入口适当距离,布置醒目的标识牌,对行走安全起到很好的保障作用,并在在此基础上对其标识牌进行个性化设计。特别是进行夜景设计时,通过各种灯光色彩来渲染环境和烘托气氛。
2.舒适性。通道处入口是地下空间和地上空间的交换节点,也是人们视觉明暗变换的过度段。设计采用浅灰色钢化夹胶玻璃、钢结构驳爪风雨篷,可以有效缓冲光线明暗变换而产生眼睛的不适感。
3.内饰材料。(1)墙面材料运用干挂大理石等装饰材料体现空间的延伸,让封闭的地下空间具有通透性。墙面砖施工缝横平竖直,自然形成一种韵律感。(2)地面材料采用耐磨、抗压、防水、抗腐蚀、防滑的花岗岩石材。局部采用套色处理。(3)地下通道楼梯是主要的交通枢纽之一,踏步的踏面两侧设计凹槽,避免积水。(4)顶棚设计采用亚光白色雅克力板吊顶,明快而富于变化。顶棚的高度结合空间功能高低错落,赋予流动感。并结合照明灯具的选择,引导人流方向。
随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。在以往接地设计中,接地网的均压导体都按3m,5m,7m,10m等间距布置,由于端部和邻近效应,地网的边角处泄漏电流远大于中心处,使地电位分布很不均匀,边角网孔电势大大高于中心网孔电势,而且这种差值随地网面积和网孔数的增加而加大。本文结合在建工程220kV新塘变电站的接地网设计,阐释了接地网不等间距布置的方法及其合理性。
1接地网优化设计的合理性
1.1改善导体的泄漏电流密度分布
面积为190m×170m的新塘变电站接地网,在导体根数相同的情况下,分别按10m等间距布置和平均10m不等间距布置。沿平行导体①、②、③、④、⑤的泄漏电流密度分布曲线。从此可见,不等间距布置的接地网,边上导体①的泄漏电流密度较等间距布置的接地网平均低15%左右;对于导体②的泄漏电流密度,这两种布置的接地网几乎相等(仅相差0.3%);对于中部导体③、④、⑤,不等间距布置的接地网的泄漏电流较等间距布置的接地网分别提高了9%,14%和15%。由此可见,不等间距布置能增大中部导体的泄漏电流密度分布,相应降低了边缘导体的泄漏电流密度,使得中部导体能得到更充分的利用。
1.2均匀土壤表面的电位分布
由表1的计算结果可知,不等间距布置的接地网能较大地改善表面电位分布,其最大与最小网孔电位的相对差值不超过0.7%,使各网孔电位大致相等,而等间距地网,其最大与最小网孔电位的相对差值在12.2%以上。同时不等间距地网的最大接触电势较等间距地网的最大接触电势降低了60.1%,极大地提高了接地网的安全水平。
表1计算结果比较
布置
最大网孔电位Vmax/kV
最小网孔电位Vmin/kV
最大接触电势Vjmax/kV
接地电阻
R/Ωδ/%
等间距
5.709
5.081
0.799
0.523
12.2
不等间距
5.544
5.506
0.315
0.519
0.7
注:1)δ=(Vmax-Vmin)/Vmin;
2)地网面积为190m×170m;
3)长方向导体根数n1=18,宽方向导体根数n2=20。
1.3节省大量钢材和施工费用
如果按10m等间距布置的新塘变电站接地网,最大接触电势在边角网孔,其值为0.799kV,但采用不等间距布置时,保持最大接触电势与该值接近,这时可节省钢材31.2%,见表2。
2接地网优化设计的方法
在设计时采用尝试的方法来确定均压导体的总根数和总长度,即先对地网长和宽方向的导体根数n1和n2进行试算,对于大地网一般可采用均压导体间距为10m左右试算,若接触电势满足要求,进行技术经济比较后再考虑增减导体的根数。当确定了n1和n2后,则地网长宽方向的分段数就确定了:长方向上导体分段为k1=n2-1,宽方向上的导体分段为k2=n1-1,然后按下式得出各分段导体的长度。
表2使用钢材量的比较
表2使用钢材量的比较
布置
n1
n2
Vjmax/kV
钢材长度L/m
等间距
18
20
0.799
6860
不等间距
12
14
0.756
4700
Lik=L.Sik,
式中L——地网边长(长方向L=L1,宽方向L=L2),m;
Lik——第i段导体长度,m;
Sik——Lik占边长L的百分数。
Sik与i的关系似一负指数曲线,即Sik=b1×e-b2i+b3,
式中,b1,b2,b3均为常数,其确定方法如下:
当7≤k≤14时,当k>14时,
对于任意矩形地网,只要长、宽方向导体的布置根数一经确定,就可根据长、宽方向导体的不同分段k,分别按上述推得的公式布置导体的间距。
3结论
a)采用不等间距布置优化设计接地网,能够使地网各网孔电位趋于一致,从而提高了变电站的安全水平。
b)在同样安全水平下,优化设计的接地网较常规布置的接地网,一般能节省钢材量达38%以上,同时也减少了相应的接地工程投资,在技术上、经济上较为合理。
c)从边缘到中心均压导体间距采用按负指数规律增加的新方法来布置接地网,其指数公式的系数b只与某平行导体根数(或平行导体分段数k)有关。
近年来,建筑信息模型技术发展迅速,并且在工程设计方面得到了广泛的应用,取得了很好的效果,特别是在建筑工程领域,其应用已经非常普遍,显著提高了工程设计的质量和效率,而且有效的解决了各种设计问题,对降低工程成本,提高工程质量具有重要做作用。但是对于结构较为复杂,单体数量较多的工程项目来说,如:地下输电工程,建筑信息模型技术的应用还不是很成熟,应用的范围和实际效果还不是很明显,主要是因为工程复杂,工程规模大,建筑信息模型技术的数据信息很可能出现错误,不好掌控,再加上建模时间长等问题突出。因此,在地下输电工程这样复杂的工程设计上应用建筑信息模型技术,还需要根据实际情况,不断探索,采取有效的策略,提高建筑信息模型技术应用的水平,优化地下输电工程的结构,提高工程的质量。
1建筑信息模型技术简述
建筑信息模型技术,也就是BIM技术,是以三维数字技术为基础,集成了建筑工程项目各种相关信息的工程数据模型,实际上就是用三维数字对工程项目实体、设计和性能的一种表达[1]。通过建立系统完整的信息模型,把项目工程的生命周期内,每个阶段的各项数据、信息、资料进行连接,从而完整的来表述工程项目。并且该模型会随着项目进展不断的深化和改进,有利于工程项目项目设计设计的更加合理、科学,有利于提高解决实际问题的效率,从而更好地保证工程项目的质量。建筑信息模型技术,与传统的技术相比较,具有一定的优势和特点,如:信息完备性、信息关联性、信息一致性、可视化、协调性、模拟性、优化性等,这也是建筑信息模型技术广泛被应用的重要原因。
2地下输电工程结构设计的缺陷和不足分析
在以往的地下输电工程结构设计中,主要采用传统的设计方法,存在着一定的缺陷和不足[2]。地下输电工程一般处于地下,工程项目的规模和空间跨度都很大,输电系统中各个组成部分较为复杂,如,工作井的数量较大,地质环境差异大,排管的布置也具有一定的差异性,荷载也会随时发生变化等。应用传统设计方式,主要是先对地下输电工程系统的具体功能进行分析,然后对地下输电工程结构的外形和尺寸进行设计,再以设计图纸为依据,利用结构设计软件,进行建模计算,最后对施工图纸进行设计。由于地下输电工程处于发展之中,这种传统的设计方式已经不能很不好的满足工程发展的实际需要,在结构设计中也出现了一定的问题。(1)地下输电工程中,工作井数量相对较多,而且每个工作井的实际功能和具体的边界条件具有很大的差异性,在工作井的外形和具体尺寸设计上,就需要区别对待,分别设计,绘制的图纸数量加大,设计工作量也很大,在对结构进行计算时,需要利用相关软件建立多个模型,这样,建模和绘图的所占用的时间非常多,工作效率非常低。(2)修改工作量大,较为困难。在地下输电工程结构设计中,如果相关某个数据发生变化,需要改动,那么模型计算和绘图工作就要重新进行,工作量非常大,修改不方便。(3)设计管理困难,计算结果缺乏准确性。由于地下输电工程结构设计图纸和模型较多,而且具有一定的相似性,很容易发生数据混淆的情况,导致计算结果的准确性降低。
3建筑信息模型技术在地下输电工程结构设计中的应用分析
3.1Revit与建筑信息模型技术结合建立参数化的工作井模型
在地下输电工程结构设计中,应用Revit系列软件,利用建筑信息模型技术建立起具有一定参数信息的工作井模型。成为一个系统的信息数据库[3]。并且根据工程结构设的具体情况,根据工作井的具体涉及要求,进行修改,从而完成工作井模型设计。首先,工作井的设计内容主要是外形尺寸,每个工作井的区别都集中在接口的大小和位置上,除了长宽高等结合数据上的不同以外,还有一些其他方面的差异性,如:防水等级等,都是应用建筑信息模型技术需要的具体参数,通过修改几何参数建立工作井的模型,再与非几何参数结合,建立一个统一的数据库。其次,要在Revit中建立建筑信息模型族库,要应用结构选项卡下的构件,能够掌握结构分析时的数据信息,结合实际需要,合理选择具体的构件后,再把相应的材料、尺寸等具体的参数输入到构件属性的面板中,再把这些参数通过接口传输到Robot中。然后合理放置构件,根据具体的要求生成参数驱动模型。对于工作井来说,主要的构件就是梁板等,要在墙上开洞口,把排管连接好,选定合适的构件,对工作井的模型族库进行准确组装,然后在把所有类型的信息添加进去,生成工作井模型库。
3.2把输电工程结构模型正确导入
Robot在工作井的建筑信息模型建立完成后,要进行检查确认无误后,应用相关接口,把模型的数据信息导入到Robot中,涉及到的主要信息参数有:计算后的结构材料,尺寸信息,荷载等。导入完成后,要在Robot中对模型进行及时更新。对于工作井的建筑信息模型中的各个信息,要保证Robot软件能够完全识别[4]。如果在检查中,发现模型有不合适的地方或者不够合理,要进行及时修改,在发送到Revit中,还要及时查看发送报告,确认信息数据在传输过程中没有发生错误。
3.3对输电工程设计结构进行准确计算
在应用建筑信息模型技术对输电工程结构进行设计时,需要对设计的结构进行计算,结果准确与否,直接关系着设计的质量[5]。Robot就是用来计算的软件,主要是采用有限元算法,对模型的进行动态分析,弹塑性分析等,最后得出计算结果,并且应用表格等把结果的数据输送出去。在实际计算中,只需把Revit中已经设置好的信息全部导入到Robot中,就可以直接对结构进行计算,无需模型修改等,计算效率非常高,而且结果准确。Robot在计算结构时,会提供多种形式的网格控制方法,不仅能够计算出内力,还能够针对不同的设计范围和具体的参数进行结构的计算,如:混凝土结构的配筋等,都可以准确进行计算。在地下输电工程结构设计中,主要是根据模型的实际情况,合理选择网格尺寸和控制方法,结合所有的参数信息进行结构的计算,保证计算结果科学准确,从而提高地下输电工程结构设计的规范性和准确性,有力的保证了工程的质量。
4结论
综上所述,在地下输电工程结构设计中,应用建筑信息模型技术,是输电工程发展的必然趋势,也是科学技术进步的具体表现。通过采用合理的应用方法,打破传统设计的弊端,减少了工作量,提高了设计的效率和质量,地下输电工程的发展具有重要意义。
作者:胡能萍 汪欣 单位:江西省电力设计院
参考文献
[1]陈明,史健勇.建筑信息模型技术在地下输电工程结构设计中的应用[J].工业建筑,2016,12:196~200.
[2]牟茗.四维建筑信息模型技术研究[D].北京林业大学,2013.
2实验应用
2.1电解硫酸钠溶液
配制1mol•L-1硫酸钠溶液,向2个西林瓶中分别加入硫酸钠溶液至体积占大部分,然后滴加紫甘蓝汁至瓶口,将盛满液体的西林瓶反倒于瓶盖中,与注射针头相接触。向饮料瓶盖中加入少量硫酸钠溶液,以保证整个装置回路,用连接导线的的鳄鱼夹各夹住2个注射针,并分别与9V的电源相连。可以发现大约1~2分钟就可以观察到下列明显的现象:阳极附近有气泡产生,溶液变红色说明阳极区显酸性,水分子失去电子,生成氧气和H+;阴极附近有气泡产生,溶液变绿色说明阴极区显碱性,水分子得到电子,生成氢气和OH-。学生依据上述的实验现象就可以写出该反应的电极反应式。随着反应的进行,阴极溶液碱性增强,由绿色变成黄色。笔者建议若本实验应用于课堂教学,只要观察到阴极区变绿色即可,若应用于综合实践活动和研究性学习,可引导学生进一步观察溶液颜色的变化。阳极反应:2H2O-4e-=O2↑+4H+阴极反应:2H2O+2e-=H2↑+2OH-
2.2电解饱和食盐水
将上述硫酸钠溶液换成饱和食盐水,阳极电极换成铅笔笔芯,其余步骤同上。电解饱和食盐水,阴极区H+得到电子,生成氢气,因此附近溶液颜色由紫色变成绿色进而变成黄色,溶液显碱性。阳极溶液的颜色变化则由紫色变为红色,进而变为无色,并且可以闻到少量的刺激性气味,这说明Cl-失去电子,发生氧化反应,生成氯气,氯气与水反应生成盐酸和次氯酸,颜色的鲜明变化可以揭示这一系列化学反应。阴极反应:2H++2e-=H2↑阳极反应:2Cl--2e-=Cl2↑Cl2+H2OHCl+HClO但该实验进行到10分钟时,阳极溶液才褪色,此时产生的气体已把阳极的溶液排得仅剩少部分,而阴极所在西林瓶中的溶液则更是被排得所剩无几(因为氢气的逸出速率比氯气大)。为了解决该问题,笔者将作为阳极的西林瓶中溶液体积减少一半,阴极溶液体积不变,可以发现大约5min内阳极就可以出现由紫色变红色进而褪为无色的现象,便于学生的自主探究。该微型实验装置也可以用于其他溶液电解实验的研究,由于不同反应的分解电压有差别,可在电源回路中串联一个合适的变阻器,用于调节电解电压,实验时逐渐增大电压,至电极上有明显反应为止。
3实验特点
宋心琦教授在“中学化学教学改革与微型实验”一文中指出,微型化学实验在中学化学中推广艰难的原因之一是很多物质在微量时和常量时给予观察者的感受可能不同,使得印象或结论因此不同。笔者认为不仅是物质本身,化学反应有时在微量和常量时给予观察者的感受也不同,而本案例中的电解质溶液虽然是“微量”(3mL),但现象并没有因此打折扣,实验现象明显。以电解硫酸钠溶液为例,阴阳两极的溶液分别呈现红色和绿色,呈现鲜明的颜色区别。
上述介绍的实验装置和相关的设计除了具有现象明显的特点外,还具有以下一些优点:
(1)时间较短,适合学生自主探究,探究电解硫酸钠溶液大约1分钟后就能观察到明显现象,而饱和食盐水的电解则可以在5分钟内看到阳极先变红后褪色的现象。
二、电子设备结构电磁兼容设计的目的
当今社会中,电子设备的正常运行,是基于电磁兼容的基础上,电磁兼容能够保证电子设备的运行不受电磁的干扰,就能够很大程度上避免电子设备细节部分和个别部位的不良反应,使电子设备的性能达到最大化,提高电子设备的运行效率,提高整个行业的生产率。众所周知,当前社会科学技术的不断发展促进了电子设备应用的广泛性,与各个行业各个领域息息相关,一旦运行的电子设备出现某些一时间不可解决的故障,就会影响整个行业的经济发展,极大地威胁整个行业的安全稳定。因此,电子行业在设计电子设备的时候,首先要考虑到影响电子设备电磁兼容的条件和因素,考虑到电磁不兼容的种种迹象和表现,以尽快采用技术手段进行调整解决,以免电子设备投入使用后出现电磁不兼容的情况,影响电子设备的正常运行。电磁兼容,简而言之就是控制电磁干扰,消除电磁干扰,使电子设备与其他的设备在特定的电磁环境中工作运行时,保证彼此的和谐稳定,保证电子设备各部分性能的正常。一个可以投入广泛使用的电子设备不仅不会辐射有害能量,而且也不会受到不相关的辐射影响。因此,电磁兼容设计的目的是为了电子设备的正常运行和广泛应用,是当今社会电子行业发展的整体走向和目标。
三、电子设备结构设计中保证电磁
兼容的方法和措施在电子设备结构设计中,需要通过采用特定的技术手段保证电子设备的电磁兼容性,以减少甚至消除电磁干扰,避免部件受到不良辐射反应而损坏,降低电子设备的整体性能和运行效率,影响整个行业的发展。新型电子产品研究开发之初,首先要对电磁兼容有一个概念性的把握,并在后期研发的时候充分考虑到电磁兼容的影响因素,进行相适应的电磁兼容开发设计,避免重复开发和资源浪费。在设计之初采取措施保证电磁兼容是最最经济节约的方法,避免了后期维修调整的人力物力的浪费。现实生活中,很多已经投入使用的电子设备如果出现电磁兼容问题维护成本极高,甚至根本没有解决办法,因此,电子设备的结构设计要做到未雨绸缪,减少不必要的麻烦和损失。目前,最常见的电子设备电磁兼容的方法有滤波、屏蔽、接地三种,这是有效消除电磁干扰的重要举措。
1电磁滤波
电磁滤波,是常见的影响电磁兼容性的因素,是压缩信号回路所致,并且会对频谱产生严重干扰,电磁滤波的存在不仅能影响干扰源的发射,而且会有效抑制干扰源频谱分量对其他设备元件如敏感设备、电路、元器件的影响。简单地讲,电磁滤波通过某种特定方式过滤信号中的特定波段频率,这种方式能够有效抑制干扰,因此,在处理电子设备结构设计中的电磁兼容问题时可以考虑在内并加以应用实施。在电子设备的运行过程中,正在运行的电路会产生一些较强的干扰信号,这些干扰信号能够通过电源线、信号线以及控制线等方式对整个电路产生巨大的干扰作用,因此,设置滤波电路已然成为当前公用电源线的发展走向和趋势,这是保证电路安全稳定,减少电路干扰,提高电子设备安全稳定的重要方式。滤波电路的设置需要掌握一定的方法和技巧,铁氧化体磁环\穿心电容、三端电容是最常见的选择器件,是有效改善电路特征的重要元件。在滤波电路设置中,还需要保证所有的电源滤波器外壳与电子设备的接地点连接在一起。只有保证滤波电路设置的合理性,才能提高电磁滤波的效率和质量,提高电磁兼容,保证电子设备正常运行和整个电子行业的发展。
2电磁屏蔽
电磁屏蔽是目前解决电磁兼容问题的最有效方法,电磁屏蔽的优点是有效地将内部电磁辐射控制在一定范围,即限制内部电磁越出既定的领域,与此同时,还能够防止外部电磁辐射的入侵,切断电磁波,减少不必要的损害。当前,电子设备出现的大多数电磁兼容问题都能够通过电磁屏蔽这种技术解决,这种方式还能够保证电路的正常工作。
2.1电磁屏蔽的作用
电磁屏蔽的作用是极大的,通过对两个不同的空间区域进行金属隔离,达到控制整个电场、磁场、电磁波的目的,使一个空间区域对另一个空间区域的辐射和感应控制在可控范围。也就是充分发挥屏蔽物体的作用,将诸如电缆、元部件、电路、组合件甚至整个系统的干扰源包围控制,阻断干扰电磁场的对外扩散;与此同时,还需要充分利用屏蔽物体将系统、电路、电子设备有效包围起来,以防止它们受到外界电磁场的影响。目前,电磁屏蔽技术是当前有效解决电磁辐射的方法,能够有效保证电磁兼容,促进电子设备的正常运行。
2.2电磁屏蔽的注意事项
2.2.1电磁屏蔽的时候,一定要注意电磁屏蔽板的放置,一定要将其尽可能地靠近被屏蔽的机械设备,同时电磁屏蔽板要尽可能地与地面相接,这是有效发挥电磁屏蔽效果的关键,越靠近被屏蔽的器械元件,电磁屏蔽板所分布的电容容量就会相应地越大。
2.2.2电磁屏蔽板的时候,电磁屏蔽板的整体屏蔽效果还会相应地受到屏蔽板本身形状的影响,实践证明,屏蔽效果最好的的屏蔽板形状是全封闭状态,并且最好是金属盒电场。
2.2.3电磁屏蔽的时候,电磁屏蔽板选择材料的时候要求也很高,经过实践调查研究,良性导体材料是屏蔽效果最好的屏蔽材料,常见的有铜、铁、铝等,与此同时,还需要注意屏蔽材料的厚度,这个需要根据实际强度灵活把握,只要屏蔽材料的厚度符合强度要求即可。
3接地技术
电子设备结构设计的电磁兼容,还会充分运用到接地技术,接地,并不是字面上理解的与土地地面相连,而是为电源和信号提供回路和基准电位。接地技术的使用有一定规则和标准,而不是随意的。接地技术的使用必须保证接地的安全性,电子设备所使用的金属质地的外壳一定要与地面相接,这是充分保障生命财产安全的重要举措,还能够确保电子设备的有效性和稳定性,保障电子电路的正常运行,杜绝静电损坏等不良情况的出现。接地技术的使用还包括工作接地,工作接地这种方式相信大家都不陌生,主要指的是单板,母板或系统之间信号的等电位参考点或参考平面,这些参考点或参考平台相当于信号回流的安全性通道,原则上认为这个通道的阻抗性是极低的。在使用接地技术的时候,一定要保证工作接地的正常,因为他的好坏直接影响整体的信号质量。因此电子设备结构设计中,熟练掌握工作接地的方法极为必要,不仅能够最大限度地减少电路间的电磁干扰,而且确保了电子设备的电磁兼容,提高了电磁兼容的可能性和稳定性。以下将简单接受接地的主要目的。电子设备接地技术的目的很明晰,就是为了最大程度上减少甚至避免电路之间的彼此干扰。通常我们提到的接地技术的目的有以下三个:
(1)接地技术的使用能够使整个电路系统中的单元电路有一个公共的参考零电位,这是保证电路系统稳定工作必要条件。
(2)接地技术能够有效防止外界电磁场产生的不良干扰。为了避免电荷形成的高压引起电子设备内部起火放电产生不良干扰,可以选用机壳接地,这样可以使大量电荷得以释放,这些积累在机壳上的大量电荷的排放可以减少电磁干扰,保证电子设备的正常运行。此外,要想获得较好的屏蔽效果,还需要根据线路对屏蔽物体进行挑选,并为其选择合适的接地,这样才能保证电子设备的有效运行。
(3)接地技术能够有效保证工作的安全性,如果发生直接雷电的电磁感应,可以有效保护电子设备,避免电子设备的意外毁坏;如果工频交流电源的输入电压由于绝缘不良的原因与机壳直接相通的时候,可以有效保护操作人员的人身安全,以免发生触电事故。因此,接地技术也是有效防止电磁干扰的重要方法,正确使用将会大大减少电子设备使用后的故障发生频率,保证电子设备的正常运行,促进电子行业的发展。
农业现场的电子设备通常以监测控制为主,监测和控制设备一般是在农机运行前进行参数设置,在运行过程中进行数据显示,在很多情况下监测和控制是合二为一的,因此要求界面是非阻塞式的,能在各种状态下方便的相互切换,并可以通过菜单项选择实现一定的功能(如:启动,停止)。农业上常用的计量单位标准尚不统一,通常还需实现计量单位切换功能。工业控制常用的界面分为5种类型:菜单屏、变量屏、选择屏、设定屏和显示屏[5]。与之类似将界面类型分为:菜单选择屏、静态文本屏、动态文本屏和参数设定屏。各个类型界面的功能见表1。基于以上界面类型,参照一般人机交互的按键系统考虑到通用性及便捷性,系统设计时采用7键制,分别为:上、下、左、右、确定、设置、返回。以下介绍各界面的元素类型和操作分析:菜单选择界面主要用于自顶向下的树状界面操作,为界面设计中常用的类型,用户通过此类界面进行界面跳转,功能设定。静态标签一般为提示性文字,静态选项为带被选择功能文字。菜单选择界面的一般操作为:上下键变更选项,左右键翻页,确定键进入下一界面,或实现某一功能,返回键返回上一界面,设置键的功能一般不使用。静态文本界面主要用于显示固定的内容,一般用于信息提示,帮助文档,版权信息的显示,即它只包含静态标签。因为静态文本界面本身操作较少,所以其按键响应也相对简单,只包含滚屏和返回,操作方法与菜单选择界面类似。动态文本界面主要用于变量数据,运行状态的实时显示,用户主要通过这类界面实现对系统实时状态的了解,其界面由静态标签和动态标签组成,而动态标签又由固定文字,变量文字组成。像静态文本界面一样动态文本界面本身并不需要太多操作,所以其按键响应也相对简单与静态文本界面相同。参数设定界面也是用户界面中常用的界面,主要用于用户对系统中的变量进行设置。它包含了几乎所有的界面常用功能,其组成如图1所示。这里的动态选项指的是既可以被选中,又会因变量和单位的改变而变化显示内容的选项。参数设定界面的操作相对复杂,因其有两种状态,即选项切换和变量修改,其操作逻辑如图2所示。以上分析了界面的组成和操作。在操作上采用了和目前大多数手持设备相仿的操作模式,并且在各种类型界面间保持了操作风格的统一。
2农机车载电子设备界面的数据结构设计
目前常见的界面框架数据结构都以菜单为单位,缺少对菜单项的精细化分,这使得界面显示和操作函数对各种类型的菜单很难做到通用,而基于菜单项的菜单组织结构可以很好解决这个问题。将以上分析抽象为实际的数据结构,则形成菜单和项两种数据结构,其中项是菜单的子结构,为了适应较小的屏幕,并简化显示和操作函数,一项即实际屏幕显示中的一行。
2.1项数据结构设计项中含有文本内容,即格式化字符串,用于格式化输出的字符串;含有数据变量地址和单位变量地址,用于填入格式化字符串中的变量内容;含有项状态标志,用于区别项的类型,以便在显示和操作时加以区分;含有跳转菜单指针,用于表明该项所应该跳转的菜单。特别指出将数据变量类型定义为无类型指针,从而使得同一种数据结构可以实现多种数据变量类型的表示。其中第一个元素表示了要显示的数据和变量元素的显示格式;第二、三个元素分别是数据变量地址和单位字符串首地址,在设置模式时可以利用这些指针修改变量原始值,实现数据设置和单位更改;第四个元素是项状态标志,表示该项是可选中项,用于区分标题和选项;最后一个元素表示选择此项后跳转的目标菜单。通常定义项数据时是定义一个项数组用来组成一个菜单,以减少存储空间,并实现随机存储。
2.2菜单数据结构设计菜单是用于表达一个界面内容和状态的数据结构。它应该含有项数组首地址,用于表示界面显示的内容;含有界面状态标志位,用于表明界面的状态和界面的功能;含有被选项,用于表明当前界面的被选项;含有页顶项,用于控制界面视图位置;含有最大项数,用于防止项数组越界;含有按键响应函数,用于相应按键操作。其中按键响应函数采用带参函数指针形式,利用界面的状态和按键共同决定需要执行的操作,既实现了统一接口,又增强了可扩展性。菜单间的关系只由项与菜单的指针决定,而与项的顺序无关。一个常见的菜单数据其中第一个元素表示了该菜单对应的项数据数组;第二个元素是菜单状态标志,表示该菜单是参数设置类型,该元素也可以在运行过程中被改为正在设置状态;第三、四个元素默认填充0,在程序实际运行中可更改,以变更选项或视图;第五个元素是菜单最大项,与项数据数组长度相当;第六个元素是操作响应函数,对应的函数为参数设定界面的操作函数。
3农机车载电子设备界面框架实现
3.1菜单显示将以上数据结构作为基础,菜单的操作实现也呼之欲出。界面显示函数,每次从PageTopSelect对应项开始显示,显示接下来的若干项到屏幕(受屏幕显示最大行影响),显示项数据时,先分析项字符串中的变量类型和显示宽度,再将项数据中对应的变量插入到显示字符串中。同时可以利用MenuSelect变量值反显选中行。如此可以显示超过屏幕长度本身的菜单,每次只显示对应屏幕大小的一部分内容,相当于扩展了屏幕。具体流程图如图3所示。
3.2操作功能实现树状菜单结构使用堆栈,即主界面为栈底,每次执行菜单跳转时执行压栈操作,菜单返回时执行出栈操作,并且堆栈操作都使用指针方式实现,这样既可以较少的代价实现多级菜单跳转,又将菜单的操作和菜单数据本身分离,使得在修改菜单数据时避免了对其他菜单关系的影响。每个菜单可以使用不同的按键响应函数,相同类型菜单之间还可以共用响应函数,兼顾了灵活性与复用性。将菜单显示和操作分开,用户可以将显示刷新放在定时中断中,将操作放在外部中断中,增强了编程的灵活性。一个典型的界面操作流程如图4所示。菜单操作对应的软件实现方式见表2。
3.3菜单修改对于已经编写好的菜单对其修改非常简单,以下介绍几种常见的菜单修改方式:(1)要增加(删除)菜单中某项,直接增加(删除)该项数据,并修改相关菜单数据的最大项参数即可。(2)要修改项数据显示格式,直接修改项数据中的格式化字符串即可。(3)要调节菜单项顺序,直接调整项数组的顺序而不用修改其他数据内容。(4)要修改某项跳转的菜单,直接替换掉该项数据后的跳转菜单指针。(5)要修改某项显示的变量,直接修改该项数据中的变量指针指向即可。(6)要将菜单中的某项移至同类型其他菜单,直接将相关项数据移至目标菜单项数组,并修改两个菜单数据的最大项参数即可。(7)要增加(删除)某菜单只需将与其相关的项数据同时增加(删除),并修改相关菜单数据的最大项参数即可。这些修改完全不涉及整个菜单的结构调整,项与项,菜单与菜单之间没有直接关系,在修改时也不会相互影响。
DOI:10.16640/ki.37-1222/t.2016.22.149
0 前言
变电站是电力系统中接受分配电能,控制电流流向,调整电压大小的电力机构,是供电系统中的重要组成部分。做好变电站电气主接线工作是保证变电站正常运行的关键,其也影响着变电站运行的灵活性、经济合理性以及检修是否方便等方面,因此,科学合理设计变电站电气主接线,全面分析影响因素,正确处理各方面关系显得尤为重要。
1 变电站电气主接线的设计问题
变电站电气主接线的设计问题主要体现在以下五个方面,一、认真考虑变电所在电力系统中的位置,变电站在电力系统中的作用和地位是决定电气主接线的主要因素,变电站具有较多分类,功能存在较大差别,在电力系统中的地位与作用不同,对主接线连接的的经济性、可靠性以及灵活性都具有不同要求,因而,在电气主接线设计过程中,需要认真考虑变电站的地位与功能,以此为依据进行电气主接线设计[1]。二、充分考虑变电站近远期的发展规模,在电气主接线设计过程中,需要根据电力发展规划,依照负荷大小,增长速度,地区网络情况等因素进行综合考虑,以此来确定电气主接线的出线数,连接电源数以及接线形式。三、仔细考虑变台数对电气主接线的影响,变电站的变台数直接影响着电力的传输容量,对主线的灵活性以及可靠性具有不同要求,对电气主接线会产生直接影响。四、了解备用容量对电气主接线的影响,备用容量是为了保证可靠供电的应急设施,在设备检修、故障停运的情况下具有重要作用,其容量大小以及数量不仅影响着主接线的接线形式还影响着主接线设计的安全性与可靠性。五、负荷分级以及出线数多少对电气主接线具有一定影响,在此过程中需要注意备用电源的使用,一级负荷需要设置两个独立的电源供电,以保证在一个电源不工作后,另一个电源能够继续工作,保证设施能够正常运行,以降低对主接线的影响。
2 变电站电气主接线设计策略
2.1 相关电气设备的应用
变电站电气主接线受到多种电气设备的影响,其中需要应用的电器设备有隔离开关、母线、主变压器、断路器、跨条以及继电保护装置、电压互感器、电流互感器、避雷器等[2]。在变电站电气主接线设计过程中,中间变电站与终端变电站两种功能的变电站是考虑的主要重点。下面进行详细的阐述。一、中间变电站,中间变电站具有双重功能,不仅具有母线上的交换功能,还具有能够通过主变将电能分配给低压用户的降压分配功率功能,中间变电站是终端变电站与中心变电站的中间环节,其接线方式既不需要像中心变电站那样复杂,又不能像终端变电站那样容易。二、终端变电站,终端变电站即受端变电站,此类变电站接近负荷中心,一般分为两路进线,主要通过两台主变电站将电能分配给低压用户的方式进行输送,在此情况下,主接线设计应当规范化、自动化、无人化、简单化,以便能够保证供电的可靠性,减少占地面积,不仅如此,在接线过程中还需要根据电气设备特点、电流以及电压的负荷性质、上级电网强弱等因素来确定接线方式,以保证接线的准确合理性。
2.2 典型接线方式的运用
典型接线方式的运用是变电站电气主接线设计的主要策略之一,以中间变电站与终端变电站为例,通过对二者的分析比较,详细阐述典型接线方式的运用。中间变电器常用的接线方式有四种,一、单母线连接,单母线连接即由变压器回路、线路以及一组汇流母线连接而成的电气连接方式,是较为常用的一种方式。二、单母线分段接线,这是一种采用断路器或者隔离开关将单母线分段的接线方式。三、四角形接线,四角形接线是采用多个断路器与隔离开关进行接线的一种方式。四、内桥接线外加跨条是指利用跨条电气设备辅助接线的一种接线方式。终端变电站的接线方式则有三种,一、线路变压器主接线,二、外桥接线,三、内桥接线,桥形接线是指利用一台断电器与两个隔离开关组成的桥形接线方式,在终端变电站中主要采用桥形接线方式具有较好的接线效果,能够保证设备运行的可靠性。由以上内容可知,中间变电站接线方式较多,接线过程较为复杂,能够发挥出中间变电站的重要作用,保证电力系统的安全可靠。终端变电站的接线方式相对较少,接线较为容易,接线设计也较为简单。
2.3 配电装置的选型
配电装置的选型十分重要,是电气主接线设计的关键因素。当前,配电装置的选型主要分为两种,一、屋内布置,屋内布置包括sf6全封闭组合电气布置、断路器小车屋内布置,普通电器安装屋内布置等,其运行维护较好,占地面积小,投资相对较大,适用于城市中心、用地紧张、城郊以及污染严重的地方[3]。二、屋外布置,屋外布置分为屋外高型布置、屋外半高型布置以及屋外中型布置,其主要适用于农村与县城,屋外布置具有一定优势,首先,母线下不布置任何电气设备,设备布置清晰,不易产生误操作。其次,运行可靠,维修与施工容易,最后,经济合理,投资少,造价低。由此可见,做好配电装置的选型工作是科学合理设计变电站电气主接线的基础。
3 总结
综上所述,变电站主接线设计关系到电力系统运行的安全性与可靠性,科学合理设计变电站主接线方式十分重要,通过分析主接线设计中的问题,满足其基本需求,研究主接线变电策略有助于保证电气主接线的有效性,确保电力系统的安全性,实现整个电力行业的良好发展,同时推动我国经济建设的顺利进行。
参考文献:
1引言
在当今的各种实时自动控制和智能化仪器仪表中,人机交互是不可缺少的一部分。一般而言,人机交互是由系统配置的外部设备来完成,但其实现方式有两种:一种是由MCU力口驱动芯片实现,如键盘显示控制芯片SK5279A,串行数据传输数码显示驱动芯片MAX7219等等,这时显然MCU没有LCD的驱动功能。另一种就是MCU本身具有驱动功能,它通过数据总线与控制信号直接采用存储器访问形式或I/O设备访问形式控制键盘和LCD实现人机对话。这里的MCU主要有世界各大单片机生产厂商开发的各种单片机,其中TI公司的MSP430系列因其许多独特的特性引起许多研究人员的特别关注,在国内外的发展应用正逐步走向成熟。
2LCD简介
LCD(LiquidCrystalDisplay),即液晶显示器。液晶显示是通过环境光来显示信息的,它本身并不发光,因而功耗很低,只要求液晶周围有足够的光强。LCD是人与机器沟通的重要界面,早期以显像管(CRT/CathodeRayTube)显示器为主,但随着科技不断进步,各种显示技术如雨后春笋般诞生。LCD由于具有轻薄短小、低耗电量、无辐射危险、平面直角显示以
及影像稳定不闪烁等优势,逐渐占据显示的主流地位。
LCD的类型,根据其分类方式的不同而不同。如根据LCD显示内容的不同可以分为段式LCD和点阵LCD。根据LCD驱动方式的不同可以分为静态驱动和多路驱动。
3MSP430F44X简介
MSP430F44X系列是TI公司最新推出的具有超低功耗特性的Flash型16位RISC指令集单片机[2]。该系列单片机性价比相当高,在系统设计、开发调试及实际应用上都表现出较明显的优势。它主要应用在各种要求极低功率消耗的场合,特别适合用于智能测量仪器、各种医疗器械、智能化家用电器和电池供电便携设备产品之中。
3.1系统结构
MSP430F44X的系统结构,主要包括:CPU、程序存储器(ROM)、数据存储器(RAM)、FLL+时钟系统(片内DCO+晶体振荡器)、看门狗定时器/通用目的定时器(WatchDog)、ADCl2(12位A/D)、比较器A(精确的模拟比较器,常用于斜边(Slope)A/D转换)、复位电压控制/电源电压管理、基本定时器(BasicTimerl)、定时器(Timer-a和Timer-B)、LCD控制器/比较器(多达160段)、硬件乘法器、I/O口和串行口[4]。系列中各种具体的型号稍有差别。在本次设计中,具体选择MSP430F449作为人机接口电路的设计具有许多独到的优势。这一点,读者可以根据TI公司相关的数据手册进行比较。
3.2片内外模块特性
MSP430F44X具有丰富的片内模块,其明显的特点是:具有48条I/0口线的6个并行口P1-P6,其中P1、p2具有中断能力,同时具有2个可用于UART/SPI模式选择的串行口(USART0和USARTl);内含12位的A/D转换器ADCl2,快速执行8×8、8×16、16×16乘法操作并立即得到结果的硬件乘法器;多达160段的LCD控制器/比较器,可以实现多种方式的驱动显示;可以实现UART、PWM、斜坡ADC的16位Timer-A和16位Timer-B;非常灵活的时钟系统,既可用32768Hz的钟表晶振产生低频时钟,也可以用450kHz-8MHz的晶体产生高频时钟,同时还可以使用外部时钟源或者用不同控制频率的DCO;多达几十kB的Flash空间,这样数据既可以保存在片内的Flash信息存储器,也可保存在程序的Hash中的剩余空间。
4接口电路设计
4.1接口电路简图及说明
典型应用电路示意图。在该图中,LCD类型和键盘种类及数目的选择、下拉电阻的数值大小都必须认真考虑,硬件设计要满足一定的工作时序关系,复位时预留缓冲时间和悬空部分引脚,晶振的选择要在适当的数值,必须保证交流驱动的频率在30Hz-1000Hz范围内,其具体的情况请详细参考TI公司的相关资料[3]。
4.2段型液晶显示屏EDS820A简介
一般而言,LCD分为笔段型和点阵字符型及点阵图形型。笔段型主要是显示数字,常用于计数、计量和计时;点阵字符型用于显示数字和西文字符;点阵图形型用于显示图形及字符。本设计中用到的EDS820A就是由西安新敏电子科技有限公司生产的笔段型LCD。是该显示屏的各个引脚的逻辑功能表。
显而易见,该产品EDS820A是5位的液晶显示屏,它只有4个DP,用于显示小数点;COM端也只有一个,所以该LCD与MSP430F449的管脚连接应该引起足够重视.
5软件设计
硬件连接电路图为例,编写了键盘控制及显示程序,程序在IAREmbeddedWorkbench编译通过。全部主程序包括详细的发射和接收子程序,及初始化和等待键盘输入转换、显示等等,值得注意的是发射与接收的控制要适当。
该程序是用汇编编写的。程序实现的是等待按键输入,读取键值,最后进行键值处理和显示的功能。
检测是否有键按下是通过KEY是否有高电平信号。平时,KEY为低电平,当有键按下时为高电平,它发送一个脉冲给单片机MSP430F449,当单片机检测到该信号时,判断按键的功能,从而进行相应的处理。
6人机接口电路在体内电刺激器中的应用
医学上,在进行疾病控制时,通常可以通过电极以一定波形(如方波、正弦波等)、频率、幅度、占空比等电信号对神经或肌肉进行刺激,以使其支配相应的功能或肌肉产生收缩/舒张动作,从而有利于症状的减轻。由于不同部位的神经或肌肉对电刺激发生的敏感水平不同,不同强弱和不同性质的电信号所产生的刺激效果是不一样的。我们研制的体内电刺激器,可以产生手术时所需要的具有不同的频率、幅度、占空比的不同波形信号。该仪器幅度、占空比准确,频率稳定,各参数均可以精确的调节。而且,由于使用了LCD显示,它与单片机的连接简单。LCD具有质量轻、体积小、电压低、功耗小、显示内容丰富等优点,其人机界面相当友好。但人机接口电路设计的优劣直接影响到整台仪器的使用效果。
1.1结构设计的延性特点
在建筑物使用的过程中,由于受到地震、风力以及沉降等因素的影响,建筑会发生一定的变形,尤其是一些高层建筑。为了避免高层建筑由于变形而发生损坏甚至倒塌现象,我们在对建筑结构设计的时候,需要采取一些措施使建筑物具有一定的结构延性,从而确保建筑结构的安全性。
1.2结构设计的水平荷载问题一般来说,在对一些低矮的建筑进行设计的时候,我们主要考虑的是竖向的荷载因素,而在一些高层建筑中,虽然竖向的荷载控制非常重要,但是,水平荷载则起着主要的决定性作用。鉴于此,在对一些高层建筑结构进行设计的时候,我们不仅要考虑竖向的荷载控制,更要注重水平荷载的影响,通过提高建筑结构水平荷载能力,进而增强建筑结构的稳定性和安全性。
1.3结构设计的抗震特点近年来,由于受到多种因素的影响,地震动发生频率增多,对建筑造成了严重伤害。因此,现代建筑对抗震性能的要求也比较高。在这种形势背景下,为了顺应时展潮流和满足现实发展需要,我们在对建筑结构进行设计的时候,还要考虑抗震要求,使建筑结构的质量达到小震不坏和大震不倒的标准,通过提高建筑结构的抗震性能,从而减少地震等自然灾害对建筑的毁坏。
1.4结构设计的侧移变形问题目前,为了节约有限的土地资源,高层建筑已经成为现代建筑发展的一种趋势。高层建筑的水平荷载比较大,并随着建筑高度的增加而增加,在一些因素的作用下,高层建筑就会发生一定的变形,使建筑的安全性大大降低。因此,在建筑结构设计的时候,我们要提高建筑的强度,使它具有良好的强度和刚度,有效控制侧移变形的发生。
2建筑结构设计的原则
2.1选用合理的基础方案基础设计是建筑结构设计中一个重要的组成部分,在对建筑进行基础设计的时候,我们需要综合考虑周围的地质条件、施工条件以及分析建筑结构的类型和荷载的分布等。总之,我们要从建筑实际情况出发,依据相关要求,选用合理的基础方案。
2.2选择适当的计算简图计算简图是建筑结构设计中一个关键环节,它是建筑结构的一种简化形式,对建筑结构的安全性具有重要影响。因此,在建筑结构设计的时候,我们要选择适当的计算简图,提高建筑结构设计的安全性,避免由于计算简图问题引发各种安全事故。
2.3选用科学的结构方案科学的结构方案是提高建筑结构设计水平的重要保证。因此,在对建筑结构结构进行设计的时候,我们要选用一个经济性的方案,确保建筑结构形式和结构体系的可行性。比如,在建筑结构体系方面,同一结构单元最好采用相同的结构体系,并且达到受力明确,传力简洁的要求。简而言之,在对建筑结构进行设计的时候,我们要综合考虑施工现场的地质条件、选材以及设计要求等因素,从而选用一个更加科学的结构方案。
2.4采取一定的构造措施为了提高建筑结构设计的科学合理性,保证建筑结构的安全稳定性,在进行建筑结构设计的时候,我们还要采取一定的构造措施。比如,我们要注意钢筋瞄固的长度,要关注构件的延性,要考虑温度的应力作用等。通过这些构造措施的应用,可以在很大程度上保证建筑结构的质量。
3建筑结构设计的安全性
安全性是建筑结构设计中一个重要的问题。为了保证建筑结构的安全性,在对其进行设计的时候,我们需要关注以下几个问题。第一,建筑设计中超高问题的处理。正如上文所述,在土地资源紧缺状况下,现代建筑向着高层的方向发展。但是,为了保证高层建筑的安全性,在对建筑结构进行设计的时候,我们要对建筑的高度进行严格控制,避免由于楼层过高影响建筑的质量和抗震性能等。第二,建筑中短肢剪力墙的问题。在建筑施工中,为了保证建筑结构的抗侧力,我们需要设置一定的剪力墙,而那些墙肢截面高厚比例是5—8的剪力墙,我们称之为短肢剪力墙。短肢体剪力墙在应用过程中会受到很多限制,因此,在建筑结构设计中,如果条件允许,我们尽量少用甚至不用短肢剪力墙,避免给建筑结构设计增添一些不必要的麻烦。第三,建筑中嵌固端的问题。在建筑结构设计中,嵌固端位置的选择也是一个不容忽视的问题。一般来说,大多数高层建筑都会有地下室,在对嵌固端进行设计的时候,我们可以把它设置在地下室的顶板位置,不仅有利于建筑结构的后期设计的顺利进行,而且也更加安全,减少了建筑结构设计中的安全隐患。第四,建筑中的规则性问题。随着建筑业的发展,我国建筑结构规则方面发生了很大的变化。比如,建筑设计中平面规则性的信息变化、建筑结构中嵌固端中上下层的刚度比的信息变化等。在对建筑结构进行设计的时候,设计工作人员要关注这些结构规则信息变化,并遵循新的规范,避免在建筑结构设计后期由于修改而增添麻烦。
1.1促进建筑物更好运行和工作
电气设备是建筑得以有效运行和工作的重要设备,如果忽视采取相应措施做好电气设计,容易导致资源、能源出现大量浪费现象,对整个建筑物的运行带来不利影响。而采取有效措施,在电气设计中采用节能技术,能有效转变这种情况,推动设计水平提高,促进电气设备能耗降低,使整个建筑物更好运行和工作,为人们生活创造良好条件。
1.2提高生活质量和环境质量
如果建筑物电气设备的资源、能源消耗过大,不仅影响周围环境,还会对人们生活质量的提高带来不利影响。而采取相应措施,重视节能技术应用能彻底改变这种情况,对建筑电气作用的发挥产生积极影响。例如,通过太阳能、风能利用,能促进建筑电气节约能源、资源,更好满足人们对各种能源的需要,为人们生活营造良好氛围,也有利于提高周围环境质量。
2建筑电气设计节能技术的原则
在建筑电气设计中采用节能技术,应该以相关原则为指导,将这些原则有效落实到电气设计的每个环节。总的来说,这些原则包括以下几个方面。
2.1安全原则
建筑电气设计的目的是满足人们日常使用的需要,为人们日常生活营造良好环境氛围。节能技术的采用是为了节约能源、资源,降低消耗,取得更好的效果。但不能忽视的是,采用节能技术的同时必须坚持安全原则,实现对各类事故有效预防,保证电气设备绝缘性能良好,合理设计防雷技术、防静电技术,在降低能耗的前提下,实现对各类事故的有效预防。
2.2适用原则
节能技术的采用必须与建筑物相适用,不能为满足节能而进行设计,而是在适应建筑物的前提下,采取有效的节能技术,促进节能水平提高。另外在采用节能技术时,还要确保电气设备正常运行,满足人们日常生活的使用要求,保证质量合格,满足负荷容量要求,进而促进电气设备综合性能有效发挥,更好发挥其节能效果。
2.3经济原则
在确保电气设备节能降低的基础上,促进电气工程经济效益最大发挥。要在保证电气设备使用功能及安全的基础上,尽量采用投资低,效果佳的节能技术,提高设计的经济性,节约成本。合理选用节能设备,提高设备性能,降低设备运行和维修成本,在发挥节能效果的前提下,促进电气设备更好运行和工作,降低整个建筑物电气设备运行成本。
3建筑电气设计的节能技术应用存在的不足
尽管很多设计单位认识到建筑电气设计节能技术的应用意义,能根据具体情况,综合采取有效对策。但由于设计人员综合水平偏低,相关管理制度不完善,导致电气设计中仍然存在一些问题与不足。例如,供配电系统选择不合理,变压器选型不恰当,照明设计未能得到有效落实,导致大量电能的浪费,对太阳能、风能等清洁能源的利用存在不足的情况。这些问题影响电气设计水平提高,也不利于整个建筑节能工作,今后应该采取措施改进和完善。
4建筑电气设计的节能技术及其应用对策
为应对电气设计节能工作存在的不足,根据存在的问题,结合实际工作需要,笔者认为今后应该采取以下有效对策。
4.1合理选择供配电系统及变压器
在供配电系统选择时,要综合考虑建筑电气的负荷性质与容量、电气设备类型、供电距离等多种因素,选择合适的供电电压,科学设计供配电系统,保证系统连接到位,能有效运行和发挥作用。另外,为促进电气设备更好运行和工作,必须合理选择变压器,降低其运行能耗,提高运行效率,实现节能的目的。
4.2做好照明系统节能设计
整个建筑工程建设中,照明电器所消耗的能源较多,是节能设计的重点和关键环节,要结合实际情况,充分挖掘节能潜力,促进设计水平提高。高处灯具选择金属卤化物或高压钠灯,或采用大功率荧光灯,以实现节能的目的,通常不采用白炽灯。面积较小房间采用两灯一控或一灯一控方式,面积较大房间采用一控多灯方式,适当设计单控灯,楼梯、走廊、过道采用定时开关控制方式,室外照明采用光电定时控制方式。
4.3提高电气系统功率因素
提高电气设备自然功率因素,降低无功功率要求,应用功率较高的电动机。利用电容器进行无功功率补偿,当自然功率因素达不到要求时,要进行无功功率补偿,减少路上无功传输损耗,实现节能的目的,降低能耗。
4.4重视无功补偿设计
设计中要加强配电变压器的无功补偿,提高变压器功率因素,实现节能的目的。在传统无功补偿工作中,采用的是三相共补方式,其应用相对比较广泛,取得良好的施工效果。随着社会生产力提升,建筑电气中的大功率电气应用越来越多,使三相平衡难度不断加大,对电气设计也提出更高要求。为应对这种情况,有必要对变压器进行单相无功补偿,但该技术应用会增加投资,设计中要对其综合、全面考虑。
4.5有效利用清洁能源
随着技术发展和进步,越来越多的清洁能源被应用到建筑电气设计中,这也为电气设计中更好应用节能技术指明方向。其中最为常见的是太阳能、风能、地热能等,设计中要重视对这些清洁能源的利用,使其更好发挥节能作用。例如,在建筑电气设计中,应用太阳能光伏供电系统能促进建筑物节能效果提升,该技术通过光伏效应,将太阳能转化为电能,为建筑物提供电能,其重要组成内容包括蓄电池、太阳能电池板、充电控制模块、放电控制模块等。建筑电气设计采用太阳能,主要将其应用到照明、热水系统、锅炉系统当中,并且其应用具有良好效果,设计中应该重视清洁能源利用。
DSRC作为一种专用的无线短距通信协议,主要针对固定于车道或路侧的路侧单元(RSU)与转载于移动车辆上的车载单元(OBU)之间的通信接口规范。本文采用广泛使用的被动式欧洲DSRC标准,其主要技术指标如下:工作频率为5.8GHz,下行数据为FMO编码,速率为500kbps,调制方式为幅度(AM)调制;上行数据为NnZI编码,速率为250kbps,调制方式为2MHz或1.5MHz副载波的二进制相移键控(BP5K)调制,数据误码率为10-6。图l为DSRC通信系统工作模式。它采用半双工的通信模式,主要有两种工作方式:下行和上行方式。当在下行方式时,RSU为发射模式,而OBU为接收模式,RSU发射以AM调制方式把调制信号FAM加到5.8GHz的载波频率F0上。当在上行方式时,RSU为接收模式,而OBU为发射模式,RSU发射连续的j.SCHz载波FO给OBU,并与OBU中的2MHz或1.5MHz的副载波BP5K调制信号Fm混频后,再通过天线反射回R5U上的接收机进行同步解调。
本文针对DSRC通信系统给定的要求,提出了一套含OBU和RSU的频率为5.8GHz的微波接收电路,具有灵敏度高、动态范围大等特点,并在最后介绍了系统的实验情况。
图1
1设计原理
1.1接收系统的作用距离和灵敏度估算
OBU的下行唤醒作用距离为:
(1)式中,λ=载波的波长=5cm;po=RSU发射机的功率输出=18dBm;Gt为RSU的天线增益:13dB;Gr=OBU的天线增益=6dB;Ls=车辆挡风玻璃造成的损耗=-5dB;Smin=OBU的唤醒灵敏度=-40dBm。因此可求得OBU的下行唤醒作用距离在15m左右。
OBU接收到的功率,经OBU的BP5K副载波调制后,再发射回RSU接收机,故接收功率为:
(2)式中,Lb为OBU的副载波调制和转发损耗,约为-6dB;月为上行链路时OBU与RSU接收机的距离。所以当只为5m-1lm的正常通信范围时,R5U接收机射频端的动态起伏为-84dBm~-97dBm,RSU接收机灵敏度必须<-97dBm。
1.2RSU接收机的总体设计
本系统为微波反射式系统,OBU反射RSU发射机的载波作为上行发射载波,故RSU接收机的RF信号与本振10信号相同。所以本接收机采用零中频接收方案设计,因为上行副载波BPSK调制信号是双边带调制,它的频谱位于载频的两边,故不需要镜频抑制。如图2所示,RSU接收机主要由射频带通滤波器、低噪声放大器、1昆频器、中频带通滤波器和中频放大及BPSK解调电路组成。
图2
针对系统对接收机的要求,在接收机设计中,主要注重以下几个方面:接收机的噪声系数设计、接收机的大动态范围设计、接收机微波无源部件的准确设计。考虑其全面的性能,在具体电路设计中,必须均衡设计各级的噪声系数、功率增益,保证各个无源部件的准确性,合理分配部分电路的指标,以达到系统对接收机的要求。
1.3RSU接收机的灵敏度
对于相干解调的BPSK信号的比特误码率BER为:
(3)式中,S/N为输入信号的信噪比。因此,为了获得10-6或更少的数据误码率,中频放大器端的信噪比必须大于10.5dB。而RSU接收机所需的信号功率可表示为:
PUR=10lg(kT)+10lgB+NF+S/N(4)
(4)式中,k=波尔兹曼常数,T=室温(290K),B=中频带宽=1MHz,NF=RSU中频放大器前端的噪声系数,S/N为中频放大器输入端信噪比>10.5dB。
RSU中频放大器前端的噪声系数为:
(5)式中,NF1=1/G1=射频带通滤波器插入损耗=2dB,NF2=低噪声放大器噪声系数=2.1dB,NF3=混频器单边噪声系数=5dB,G2=低噪声放大器增益=24dB(见图2)。G3=混频器的增益=-8dB,NF4=中频带通滤波器噪声系数=3dB。
当S/N为最小所需信噪比(10.5dB)时,可求得RSU接收机的灵敏度为:
Pmin=(-114+4.2+10.5)dBm≈-99dBm<-97dBm
故可以满足系统的设计要求。
1.4RSU接收机的动态范围
动态范围是指以某种方式降低接收机性能的较强带外信号电平与极微弱信号之比。通常考虑的弱信号就是接收灵敏度。动态范围通常有两种表现方式,即用IdB增益压缩表示的单音动态范围和三阶互调表示的双音动态范围。本接收系统中,主要考虑单音动态范围。RSU接收机总的三阶互调输入截断点(IP3)3为:
(6)式中,(IP3)1=射频带通滤波器的I/P=∞,(IP3)2=第一级LNA的IP3=15dBm,(IP3)3=第二级LNA的IP3=23dBm;(IP3)4=混频器的IP3=14dBm;Gi为以上各级的增益,其中G2=15dB,G3=9dB,两级共24dB,其他增益值如图2所示。故可求得:
,
得(/P3)o=-8dBm。
一般而言,IdB输入压缩点Pldb-in要比三阶互调截断点约低10dB,所以RSU接收机总的Pldb-in约为-18dBm,故接收端动态范围为-99dBm--18dBm。本系统正常通信时接收端工作信号范围为-97dBm--84dBm,但因为发射机的输出功率为18dBm,而收发天线之间的隔离度>38dB,考虑发射的强信号耦合,则接收机收到的最大信号Pmax=(18-38)dBm=-20dBm。故实际接收射频信号端动态范围为-97dBm~-20dBm。显然,RSU接收机的动态范围满足系统的要求。
1.5RSU接收机的微波部件设计、仿真和制作
射频带通滤波器采用耦合微带线三级级联方式,结构紧凑,寄生通带的中心频率较高,适用频带范围大。图3为带通滤波器仿真的S21和S11参数图,带通滤波器3dB带宽为5.65GHz~5.95GHz,在5.3GHz和6.3GHz带外频率点处衰减>20dB。实际测试的带内插损S21比仿真设计的要大1~2dB,这是因为滤波器相对频带仅为4%左右,此时耦合线的辐射损耗对Q值影响大,导致带内衰减加大。
图3
扇形线应用于微波有源器件的直流偏置电路中,它与隔直电容一起确保直流偏置与射频信号的隔离。扇形的长度和连线长度都为中心频率1/4波长左右,连线一般作成弯曲的形式,便于对其长度进行微调,夹角为45度如图4扇形线的S11和S22参数仿真图所示,扇形偏线在5.7GHz~5.9GHz频段内,插损小于0.5dB,其回波损耗约大于40dB,故能较好地对射频信号进行隔离。
2接收机电路设计技术
2.1OBU电路设计
OBU电路框图如图5所示,SB_out为唤醒直流输出最大信号,DATA_out为解调后的下行FMO码输出,MOD为下行的2MHz载波的BPSK调制信号输入端,OBU有闲置、下行和上行方式三种工作模式,由WKin和T/R来选择控制。OBU的唤醒灵敏度约为-40dBm,转发损耗约为-6dB。在PCB制作时,要注意周边器件尽量靠近IC,布线尽量短,减少分布参数的影响。在RF端口接一1/4波长的短接线到地,保护OBU不受静电或其它瞬态干扰损坏。
图4
2.2RSU接收机低噪声放大电路
为了更好地达到噪声与增益的平衡,本系统采用了两级低噪声放大。要把idb压缩点小、噪声系数小和增益大的作为前级放大。要注意低噪曹的防静电保护和电磁屏蔽,防止其振荡影响性能。
2.3RSU接收机混频器电路设计
一般说来,无源平衡混频器的性能最好,它具有较高的二阶、三阶截获点,有更好的噪声平衡性能,但缺点是需要大的本振功率并具有较大的变频损耗。这里采用无源双平衡混频器MMIC,在RF信号频率为5.8GHz、本振LO输入功率为10dBm的情况下,变频损耗为8dB,双边噪声系数为5dB(双边带为8dB),输入1dB压缩点为9dBm,三阶互调截断输入点为14dBm,本振-射频信号的隔离度为30dB,本振-中频的隔离度为25dB。
2.4RSU接收机中频滤波/放大电路
中频系统的频率特性如中心频率、通频带、带内起伏、带外衰减等主要取决于中频滤波器,通常为LC型滤波器,这里采用低通-高通构成的带通滤波器。BPSK信号的频谱类似载波抑制的双边带,其带宽为基带信号带宽的2倍,即500kHz。但考虑到2MHz或1.5MHz作为载波中心频率,所以滤波器中心频率为1.75MHz,3dB带宽为1MHz,带外抑制在0.3MHz处大于30dB,滤除因反射强耦合混频后产生的直流低频信号,在10MHz处大于35dB,防止带外信号的干扰。
中频放大器由四级组成,前三级为低噪声系数和宽频带工作范围的双极型放大器MMIC,末级为视频宽带运放。四级增益共为7&lB左右。因为增益高,很容易导致正反馈产生自激,可在级间并接稳定电阻到地,一般为100欧姆左右。
2.5日SU接收机系统指标测试
RSU接收机系统指标测量方案如下:接收机本振端输入频率为5797.5MHz,功率为10dBm的频率源,网络分析仪HP8753ET输出端经衰减器衰减后与接收机信号端相连,HP8753ET输出频率为5799.5MHz的单频连续波,功率可调整,用频谱仪测试中放2MHz频率处的输出功率值,测试结果如表1。
表1实验测试结果
信号输入端功率(dBm)本体噪声(不加输入)-102-97-92-88-86-84-82