绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇六年级数学教案范文,希望它们能为您的写作提供参考和启发。
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。[来源:Z+xx+k.Com]
教学重、难点:
负数的意义。
教学过程:
一、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。[来源:学|科|网]
①
六年级上学期转来6人,本学期转走6人。
②
张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③
与标准体重比,小明重了2.5千克,小华轻了
1.8千克。
④
一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法……
(3)展示交流。……
2.认识正、负数。
(1)引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6
-6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
①
同桌交流。
②
全班交流。根据学生发言板书。[来源:学&科&网]
这样的正、负数能写完吗?(板书:…
…)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”。
(1)看一看、读一读。
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。
哈尔滨:
-15
℃~-3
℃
北京:
-5
℃~5
℃
深圳:
12
℃~23
℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说。
我们来看首都北京当天的温度,“-5
℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5
℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)
你能很快找到12
℃、-3
℃吗?
(3)提升认识。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
(完善板书。)
5.练一练。
读一读,填一填。(练习一第1题。)
三、练习应用
今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。
四、总结延伸[来源:学科网ZXXK]
人教版六年级上册P107例1,P108做一做,练十二第2题。
教学目标:
1、通过观察、操作、归纳等活动,学生借助“形”来直观感受与“数”之间的关系,体会有时“形”与“数”能互相解释,并能借助“形”解决一些与“数”有关的问题。
2、学生通过数与形结合来分析思考问题,从而感悟数形结合的思想,提高解决问题的能力。
教学重点:
借助“形”感受与“数”之间的关系,培养向上用“数形结合”的思想解决问题。
教学难点:
找到合适的形来表示数和在形中找出数的规律。
教学过程:
一、复习导入:
师:我们已经学过奇数,你还记得哪些数是奇数吗?(PPT出示)
师:相邻的两个奇数之间有什么关系?
今天我们继续研究奇数。(出示加法算式口算得数:1+3,1+3+5)
师:同学们算得真快。(出示:1+3+5+7+9+11+13
=)你还能马上报出得数吗?老师能。你们也想算的很快吗?今天我们就来研究数与形。板书课题:数与形
二、探究新知:
教学例一
师:这条算式中是不是存在一些规律,可以帮助我们快速的计算呢?
复杂的问题都是从简单开始的。我们先来观察一下前面的两条算式。
(一)画图形
1、提示用1个小正方形表示1,那+3就是再加三个一样的小正方形。
出示图片:有几个小正方形?你是怎么知道的?
2、再+5呢?可以怎么摆?
出示图片
(
二)形与数对应
为了便于观察,老师给他们都涂上了颜色,是不是更清楚呢?
我们把刚才表示小正方形数的2种算式综合起来,可以用什么号连接?
板书:
1=1的平方
1+3=2的平方
1+3+5=3的平方
小结:这里的正方形直观的解释了数的两种运算,同学们想一想,按照这样的规律,图四会是什么样子,与它配套的算式又是什么样子?同桌合作,画出草图,写出算式。
(三)找规律
观察这些数和形,你有什么发现?
生1:大正方形右上角的小正方形和其他“L”形所包含的小正方,形数之和正好是每行每列小正方形数的平方
生2:加法算式中的加数都是奇数,(都是从1开始的)
生3:有几个数相加,和就是几的平方
想一想,第10个图中有几个小正方形?第100个图呢?这个规律可以用到所有类似数的计算吗?
只有从1开始的,连续奇数相加时,我们可以转化为求正方形的个数。
(四)总结
刚才的学习中,我们利用数的计算求出了小正方形的个数,反过来正方形也帮助我们理解了计算中各数的含义。
(五)没有图你会计算这几题吗?
(1)1+3+5+7=
(2)1+3+5+7+9+11=
(3)
=9的平方
回忆一下,刚才我们是如何学习正方形和它算式之间的联系的?
1、写算式
2、增加图
3、找规律
4、拓展
掌握这个方法,我们可以解决很多问题。
三、练习拓展
P108“做一做”第2题
1、出示问题,生独立观察。
2、小组讨论、发现规律。
3、全班汇报、交流。(PPT展示)
二十二第2题(三角形数)
1、小组合作探究
运用刚才的方法,完成书中P109
2题
2、生汇报
(1)写算式
(2)增加图
(3)找规律
形的特点:第几幅图就有几行,最下方就有几个
数的特点:都是从1开始,相邻两数相差1
和的特点:(首行+末行)×行数÷2
(4)拓展
第十个图
3、讲解三角形数
由于数量为1,3,6,10……的原片可以组成三角形,数学上,这些数也叫做“三角形数”。那么我们之前学过的1,4,9,16……,这样组成正方形的数,它叫什么呢?正方形数。
其实每个正方形数可以拆成两个不同的三角形数,比如5的平方=10+15。
4、回顾以前涉及的一些数形结合的例子。
四、全课总结
通过这节课的学习,你有什么收获?
通过探索简单的数与形的关系,我们发现了数与形的密切联系。欣赏华罗庚的一首诗:
数与形,本是相倚依,焉能分作两边飞。
数无形时少直觉,形无数时难入微。
数形结合百般好,隔离分家万事休。
切莫忘,几何代数统一体,永远联系,切莫分离。”
五、作业
教材第109页第1题。
数学广角——《数与形》
狄
艳
人教版数学六年级上册第八章数学广角——数与形
教学目标:
1、结合具体实例初步理解数与形结合的思想方法。
2、运用数形结合的方法探索规律,帮助计算,解决实际问题。
3、在解决实际问题的过程中,体会数与形之间的密切联系,感受数学知识的奥妙,激发学生学习数学的兴趣。
教学重难点:
1、结合具体实例理解数与形结合的思想方法。
2、运用数形结合的方法探索规律,帮助计算,解决实际问题。
教具准备:
教学ppt。
教学过程:
一、复习旧知,抢答。
1+3=
1+3+5=
1+3+5+7+9+11=
1+3+5+7+9+11+13+15=
师:我们一起来口算几道加法题
师:老师发现当加数越来越多的时候你们算的越来越慢,当加数很多的时候,你们相信老师能快速的算出像上面这样的算式的答案吗。
生:相信
师:你们想见识见识吗?
生:想
师:谁愿意来说像上面这样的算式我来报答案
师:老师厉害吧,
师:其实老师也只能快速的说出像上面这样的算式的答案,你知道上面的每个算式都有什么共同的特点吗?
生:都是从1开始的几个连续的奇数相加(师板书)
师:你也想像老师这样快速的算出上面这样的算式的答案吗?
师:其实啊,老师是借助图形来发现了其中的规律
师:这节课我们就一起来学习数与形(板书课题)
二、探索新知
师:这是什么图形?
生:正方形
师:几个正方形?
生:1个
师:如在这个正方形的基础上拼一个比这个大一点的正方形至少需要增加几个小正方形?你能拼出这个正方形来吗?
师:三个人一小组拼一拼
请学生上台演示
师:拼一个大一点的正方形至少需要增加几个小正方形?一共有几个小正方形?
生:3个,1+3=4个
师:
我们再来看看这个正方形,
有几行,每行有几个,还可以怎样算出小正方形的个数?
生:边长乘边长,2乘2
师板书
师:如在这个正方形的基础上拼一个比这个大一点的正方形至少需要增加几个小正方形?你能拼出这个正方形来吗?
生:能
师:分小组拼一拼
请学生上台演示
师:拼这个再大一点的正方形需要至少增加几个小正方形?一共有几个小正方形?
生:5个,1+3+5=9个,等于3的平方
师:
我们再来看看这个正方形,有几行,每行有几个还可以怎样算出小正方形的个数?
生:边长乘边长,3乘3
师:继续拼下去,第四图形应该会是怎样呢?
出示课件
生:应该有四行四列
生2:第四幅图应该在原来的基础上增加7个小正方形。
师:我们来看一看,也就是(学生说)1+3+5+7=42
师:再继续拼下去,第5幅图会是怎样的?
生:在原来的基础上增加9个小正方形。
师:也就是1+3+5+7+9=52
师:我们一起来看看你们说的正确吗?
师:我们一起来看看这几组算式的左边有没有什么特点?
生:左边都是从1开始的几个连续奇数的和
师:我们看看左边这几个算式它们的加数的个数跟右边的结果有没有什么联系?
生:有几个连续奇数相加和就是几的平方
师:也就是说从1开始几个连续奇数相加的和就是几的平方
生齐读
师:我们来理解一下这句话,你认为这句话中哪几字很重要?
生:1
连续
奇数
几个
几的平方
师:我们看1+3+5+7+……
,n个数相加和是?
生:N的平方
师:也就是说从1开始N个连续奇数相加,和就是N的平方。(生齐读)
师:你能说说像上面这样的算式吗?
生1
生2
师:黑板上的两个算式你知道是几的平方吗?
生:不知道
师:为什么?
生:不知道加数有几个?
师:也就是它的加数太多了,加数太多的时候还能这样去数它加数的个数吗?
师:那怎么能不用数就知道有几个数呢?
师:从1到10这十个数中,有几个奇数?几个偶数?
生:有5奇5偶
师:从1到100这一百个数中,有几个奇数,几个偶数?
生:有50奇50偶
师:也就是说奇偶同样多
师:那你知道上面这个算式有几个奇数吗?
生:19+1的和除以2,有十个
师:你会算奇数的个数了吗?
生:用奇数中最大的个数加1除以2就等于奇数的个数。
师:所以1+3+7+9+……+17+19=等于19+1的和除以2等于10,10的平方等于100…………
师:这种方法简单吧!
生:简单
三、巩固练习
1、师:你们会写这种题目吗?老师来考考你们
1+3+5+7+9=
1+3+5+7+9+11+13+15=
=92
2、下面请你动动脑筋看看这道题怎么算
1+3+5+7+9+11+9+7+5+3+1=
师:这种方法简单吧,这么简单的方法我们是借助什么来发现它的规律的呢?
生:图形
师:看来结合图形来解题会更直观更形象更简单
师:在数学中隐藏的数形结合的规律还很多,下面这道题你能通过图形发现数的规律吗?
。。。。。。。。。。。。
师:我们看数量为1、3、6、10、15……相同的小图形可以组成一个三角形,这些数也叫做“三角形数”。
师:同样的数量为1、4、9、16、25……的小正方形可以组成一个大正方形,这些数也叫做“正方形数”。
师:在以后的学习中我们还会学到长方形数,三角形数、正方形数、长方形数的三者之间还存在着许许多多的奥妙有待于我们同学们去发现去研究去探讨。
师:看来图形结合解题更简单方便
师:其实在我们以前的学习当中也应用到了很多数形结合,比如
师:看来数形结合在我们数学当中无处不在
更多关于教学工作计划的内容请点下方链接
幼儿园大班教学计划
小学五年级数学下册《折线统计图》教案
父亲节主题教育班会教案
高三上学期数学教学计划
四年级下册语文《诺曼底号遇难记》教案
小学六年级下册数学《数与代数》教案优质范文一【教学内容】
教材第109页第1题,练十五第1、2、3、6题。
【教学目标】
1.复习加、减法和乘、除法各部分间的关系。
2.复习四则运算的运算顺序,并能正确进行计算。
3.运用加法和乘法的运算定律和相关的性质,进行简便计算。
【重点难点】
重点:运用加、减法和乘、除法各部分间的关系验算,四则运算的计算,运用运算定律进行简便计算。
难点:运算定律的运用,能进行简便计算。
【教学过程】
一、情景导入
问题导入。
1.加、减法各部分间的关系是怎样的?乘、除法各部分间的关系呢?
2.你知道四则运算的运算顺序是怎样的?你会计算吗?
3.你知道哪些运算定律?你会运用这些运算定律进行简便计算吗?
学生讨论、汇报,师评价。
二、探究新知
1.复习四则运算。
出示教材第109页第1题。
(1)根据第①个式子,先说说加法与减法的关系,再分别写出一个加法算式和一个减法算式。
(2)根据第②个式子,先说说乘法与除法的关系,再分别写出一个乘法算式和一个除法算式。
(3)你会根据第①个和第②个算式列出一个综合算式吗?再根据第①个、第②个和第③个算式列出一个综合算式。
(4)问:你能用一句话来总结四则运算的顺序吗?
学生组内讨论、交流、汇报。
小结:没有括号时先算乘除后算加减,有括号的要先算括号里面的。
2.复习运算定律。
(1)说一说我们学过哪些运算定律。
学生自由讨论、汇报,师评价。
(2)整理汇总运算定律,用字母表示。
加法:加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
乘法:乘法交换律:a×b=b×a
乘法结合律:a×b×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(3)想一想,说一说下面的计算运用了什么运算定律。(教材第109页第1题(4)题)
学生独立完成,组内交流,汇报发言,师评价。
三、基础巩固
完成教材练十五第1、2、3、6题。
四、课堂小结
问:这节课你有哪些收获?
小结:本节课我们复习了加、减法和乘、除法各部分间的关系,并利用它们之间的关系进行验算,又复习了四则运算的运算顺序、运算定律,巩固和加深了该知识,会运用运算定律进行简便计算。
五、同步训练
教学至此,敬请选用《新领程》相关习题。
小学六年级下册数学《数与代数》教案优质范文二教学目标:
通过复习练习,进一步掌握分数、百分数、小数的互化的方法。进一步掌握分数、小数等有关性质。
教学重点、难点:分数、百分数、小数的互化的方法。分数、小数等有关性质。
教学设计:
一、复习小数、分数、百分数、成数、折扣等互化
表格出示:给出其中一种,要求转化成另外几种数。学生独立完成后,指名交流,说明转化方法。
0.35
1/4 140% 六成五 八折
二、分数、小数有关性质及其关系
出示:12÷( )=3/4=( ):36=( )/12=( )%
学生独立填写。交流:你是怎样填写的?填写时从哪开始思考?运用了哪些知识?
三、巩固练习
1、第86页第12题
独立完成,说明填写方法。
引导学生发现:第1小题:后面的数总比前面大,越来越接近1.
第2小题:后面的数总比前面小,越来越接近0
2、第86页第13、14题
读题理解要求。再按要求完成。
四、补充练习
填空题
1.有一个小数,由8个自然数单位,5个十分之一和22个千分之一组成,这个数写作(
),读作( ),它的计数单位是( )。
2.六亿零六十万零六十写作(
),改写成用“万”作单位是( ),省略万后面的尾数是( ),精确到亿位是( )。
3.两个相邻的自然数,它们的差是(
)。一个自然数既不是质数又不是合数,与它相邻的两个自然数是( )和( )。
4.如果a+1=b,那么它们的最小公倍数是(
),最大公因数是( )。
5.把0.625的小数点向左移动两位是(
),它缩小了( )倍。
6、如果一个小数的小数点向右移动一位后比原来大了32.4,那么原来这个小数是(
)
7.五个连续自然数的和是200,这五个自然数分别是(
)、( )、( )、( )、( )。
8.最大的一位纯小数比最大的两位纯小数小(
);最小的两位纯小数比最小的三位纯小数大( )。
9.两个数的积是70,一个因数扩大100倍,另一个因数缩小10倍,积是(
)。
10.按从小到大的顺序排列下列各数:
0.329
1.024 1.6 0.705 1 0.333…… Π 0
______________________________________________________________ 选择题。
1.最大的小数单位与最小的质数相差(
)。
A.1.1 B.1.9 C.0.9 D.0.1
2.一个自然数的最小倍数是18,这个数的约数有(
)个。
A.2 B.4 C.6 D.8
3.小数点向右移动两位,原来的数就(
)。
A.增加100倍 B.减少100倍 C.扩大100倍 D.缩小100倍
六下数与代数整理复习课教学设计
六下数与代数整理复习课教学设计二
回顾与整理
——总复习
【教学内容】
义务教育课程标准实验教科书青岛版小学数学六年级下册84-118页
【教材简析】
本单元是对小学阶段所学的数学知识进行系统地回顾整理,不仅是本册教材的一个重点,也是小学生全套教材的一个重要组成部分。本单元教学质量的高低关系到小学阶段数学教学目标能否圆满地完成。为了更好地实现预定的教学目标,便于教师引导学生进行系统地整理和复习,本单元把整个小学阶段所学数学知识划分为“知识与技能”、“策略与方法”两大部分,依次进行整理和复习。本复习不仅回顾与整理小学阶段所学的知识,还对渗透的数学思想方法加以梳理,使之与所学知识融为一体,以提高学生的思维品质与数学能力,形成良好的数学素养,为后继学习打好坚实的基础。
本单元在内容编排及结构安排上打破了传统的教材总复习的框架结构,从整体上将总复习分为“知识与技能”、“策略与方法”两大部分;“知识与技能”部分又分为“数与代数”、“空间与图形”、“统计与可能性”三大领域,每个领域又细化为几个板块,如“空间与图形”领域分为“图形的认识与测量”、“图形的位置与变换”两个板块;在每个板块里又设置了“回顾与整理”、“讨论与交流”、“应用与反思”三个部分。
【教学目标】
1.复习巩固第一、二学期所学的数学知识,获得适应进一步学习所必需的数学基础和知识(包括数学事实、数学活动经验)以及必要的应用技能。
2.在对知识回顾与整理的过程中,掌握整理知识的方法,并使所学知识系统化、网络化,形成完整的认知结构。
3.在回顾整理的过程中,加深对数学思想方法的认识,能综合运用所学的知识与技能解决实际问题,形成一些解决问题的基本策略,发展应用意识。
4.学会与人合作,初步形成评价与反思意识。
5.体会数学与自然及人类社会的密切联系,感受数学的应用价值,能在数学学习活动中获得成功体验,锻炼克服困难的意志,加深对数学的理解,增强学好数学的信心,从而实现《课程标准》中所制订的各项教学指标。
【教学过程】
第一课时
(数的意义和数的读写法的整理与复习)
一、创设情境,引入复习内容
(出示课本85页第1题)谈话:同学们,细心观察上面信息中都出现了哪几种数?除此之外,回想一下你还学过了哪些数?举例说明一下好吗?学生回顾、举例,教师按顺序板书数的名称。
自然数如:0、1、2、3……;
负数如:-1、-2、-3……;
整数如:0、1、2、-1、-2……;
分数如:2/3、1/2、3/4、4/3……;
小数(包括:循环小数、无限不循环小数等)如:0.1,1.2,……
百分数如:30%、15%、25%……
谈话:我们为什么要学习整数、分数、小数……这些数呢?想一想,生活中如果缺少了数,将会怎样?(学生讨论,交流)
谈话:今天我们这节课先来复习数的意义和数的读写。
【设计意图】:通过这一教学环节,大大的调动了学生参与的积极性,在静与动的结合中起到了很好的复习效果,同时也为下一步的整理建构做好铺垫。
二、归网建构,主体内化
(一)复习数的意义
1、师:先在小组中说一说各种数的意义,再根据不同的数之间的相互联系以小组为单位进行整理。
学生分组讨论整理,教师巡视指导。
全班交流,展示最佳表示方式并板书。
小学六年级下册数学《数与代数》教案优质范文三知识点
1、认识整千数
(记忆:10个一千是一万)
2、读数和写数
(读数时写汉字 写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。
5、最大的几位数和最小的几位数
最大的一位数是9,
最小的一位数是0.
最大的二位数是99,
最小的二位数是10
最大的三位数是999,
最小的三位数是100
最大的四位数是9999,
最小的四位数是1000
最大的五位数是99999,
最小的五位数是10000
最大的三位数比最小的四位数小1。
6、被减数是三位数的连续退位减法的运算步骤:
① 列竖式时相同数位一定要对齐;
② 减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。
7、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。
(两个三位数相加的和:可能是三位数,也有可能是四位数。)
8、公式:
被减数=减数+差
和=加数+另一个加数
减数=被减数-差
加数=和-另一个加数
差=被减数-减数文
小学六年级下册数学《数与代数》教案优质范文四教学目标:
1.学生进一步理解和掌握整数、小数、分数、百分数的意义,以及十进制计数法,理解小数的性质与分数的基本性质之间的联系,体会整数、小数、分数、百分数等概念之间的联系与区别;
理解和掌握自然数和整数,因数与倍数、质数与合数、公因数与公倍数等概念的含义;增强用数表达信息的意思和能力,发展数感。
2.学生进一步理解四则运算的意义,理解和掌握整数、小数、分数等四则运算的算理、算法,能正确进行相关的口算、笔算和估算,以及用计算器计算;
掌握四则混合运算的运算顺序,能正确进行四则混合运算;理解和掌握加法和乘法的运算律,能正确运用运算律进行一些简便运算和解决一些简单实际问题;获得必要的运算技能和运算能力;理解常见的数量关系,掌握分析和解决实际问题的基本方法,加深对常用的解决问题策略的感悟和体验,提高应用所学知识解决问题的能力。
3.学生进一步掌握用含有字母的式子表示简单数量关系的方法,初步理解等式的性质,会用等式的性质解一些简单的方程,能列方程解答两、三步计算的实际问题,提高分析问题和解决问题的能力,增强符号意识。
4.学生进一步理解和掌握比的意义和基本性质,理解比与分数、除法的关系,理解和掌握比例的意义和基本性质,会解比例;
理解和掌握正比例和反比例的意义,能正确判断两种相关联的量是否成正比例或成反比例;会根据给出的有正比例关系的数据在方格纸上画图,能根据其中一个量的值估计另一个量的值;能运用比和比例等知识解决一些简单实际问题,积累解决问题的经验,增强应用意识。
5.学生进一步理解和掌握已经学过的平面图形和立体图形的特征,体会相关图形之间的联系和区别,了解有关平面图形周长、面积的计算方法,以及常见几何体表面积、体积的计算方法的推导过程,会解答有关平面图形的周长、面积,以及常见几何体表面积、体积计算的简单实际问题,发展空间观念。
6.学生进一步加深对轴对称、平移和旋转、放大与缩小等图形运动方式的认识,能正确描述图形的运动过程,能按要求再方格纸上画出运动后的图形;
掌握用数对或用方向和距离描述物置的方法,能按要求在平面图上确定物体的位置或描述简单的行走路线,增强利用几何直观进行思考的能力。
7.学生进一步掌握常用的收集、整理、表示、分析和解释数据的方法,理解平均数的意义,了解常见的统计表、统计图的不同特点;
能根据具体问题选择合适的统计表或统计图表示数据,能对统计表、统计图所呈现的数据进行一些简单的分析和思考,增强数感分析观念。
8.学生进一步了解简单随机现象的特点,体会事件发生的确定性和不确定性,知道事件发生的可能性是有大小的,能列举出简单随机事件发生的所有可能的结果,正确判断简单
随机事件发生的可能性的大小。
9.学生经历综合运用所学知识探索数学规律、解决实际问题的过程,进一步提高发现和提出问题、分析和解决问题的能力,感悟不同数学知识之间、数学与生活之间、数学与其他学科之间的联系,发展应用意识和创新意识。
10.学生经历观察与比较、分析与综合、抽象与概括、类比与归纳等思维活动过程,进一步发展合情推理和演绎推理能力,积累丰富的数学活动经验,获得关于分类、对应、转化、数形结合、方程、函数等数学思想方法的体验与感悟,提高数学素养。
11.学生在回顾学习内容、反思学习过程、完善认知结构的过程中,进一步养成良好的学习习惯,体验获取知识以及与同学合作交流的乐趣,增进对数学学习的积极情感,树立学好数学的信心。
教学重点:
复习一到六年级所学的所有内容。
教学难点:
能把所学知识灵活的综合运用。
课时安排:32课时
第1课时 整数、小数的认识整理与复习
教学内容:
苏教版六下P68~70“整理与反思”、“练习与实践”第1~9题
教学目标:
1.学生回顾整理整数与小数的相关知识,加深理解整数与小数的意义,沟通各种数之间的关系,进一步弄清相关概念间的联系与区别,构建整数、小数认识的知识网络。
2.学生通过复习,进一步了解整数、小数的相关知识,掌握数的知识之间的联系;
增强用数表达和交流信息的意识和能力,进一步发展数感。
3.学生进一步体会数在日常生活中的广泛应用;
感受认数的作用,产生对数的学习兴趣,提高学好数学的自觉性。
教学重点:
整数(自然数)和小数的意义、组成及读写。
教学难点:
理解数的相关知识间的联系。
教学过程:
一、揭示课题
谈话:小学阶段的数学内容我们已经全部学完了,从今天开始我们要对所学内容进行总复习。这节课我们进行整数和小数的整理与复习。(板书课题)
通过复习,进一步认识整数、小数的意义,掌握整数、小数的有关知识,提高数的应用能力。
二、回顾整理
1.讨论整理。
提问:首先请同学们回忆一下,你了解整数和小数的哪些知识?请你结合小面的问题先自已思考、整理,再与同学说一说。
出示问题:
(1)你能举例说说怎样的数是整数,怎样的数是负数,怎样的数是小数吗?小数的基本性质是什么?
(2)你能说出整数和小数的计数单位吗?相邻计数单位间的进率都是几?举例说一说。
(3)你能举例说说读、写整数和小数要注意什么吗?怎样比较整数和小数的大小?怎样求一个数的近似数?
让学生围绕上面三个问题思考,并在小组里讨论、交流。
2.组织交流。
(1)提问:你能举例说说怎样的数是整数,怎样的数是负数,怎样的数是小数吗?小数的基本性质是什么?
结合学生回答,相机板书。
(2)提问:你能说出整数和小数的计数单位吗?相邻计数单位间的进率都有是几?举例说一说。
根据学生回答呈现数位顺序表。
提问:整数部分计数单位排列有什么规律?每个数级上的数表示什么?小数部分的计数单位按怎样的顺序排列的?
一个数在不同数位上表示的意义有什么不同?请举个例子说一说。
(3)提问:你能举例说说读、写整数和小数要注意什么吗?怎样比较整数和小数的大小?怎样求一个数的近似数?
让学生依次交流不同内容的认识,举出例子说明。
交流数的读、写法。交流数的大小比较的方法。交流求近似数的方法。
三、应用练习
1.做“练习与实践”第1题
学生独立填写。全班交流,呈现结果。
提问:从直线上看,正数和负数有什么区别?
0右边的里为什么要写小数?0左边的里的数是怎样想的?
说明:正数和负数表示相反意义,在直线上都是从0开始按顺序排列,正数都大于0,负数都小于0。
2.做“练习与实践”第2题
(1)指名口答。
提问:你是怎样知道不同的数里的“2”表示多少的?
(2)提问:你能说出这里每个数的组成吗?
说明:一个数表示多少,可以看每个数位上各是由多少个计数单位组成的。
3.做“练习与实践”第3题。
学生读题后指名回答。
4.做“练习与实践”第5题。
学生独立填写在书上。
集体校对,有错的同学说说错误的原因,并订正。
5.做“练习与实践”第6题。
指名学生读一读。
提问:怎样读数,能很方便地读出来?
说明:读数时先分级,按数级读既方便又能读准确。
6.做“练习与实践”第7题。
学生先把语文、数学课本的单价填写在书上的表格中,再算出10本、100本、1000本的总价,然后交流结果并呈现。
提问:你是怎样算的?一个数乘10、100、1000,怎样很快写出得数?一个数除以10、100、1000,可以怎样写出得数?
7.做“练习与实践”第8题。
(1)学生各自读题,再指名读一读表中的各个数。提问:通过读表中的数,你有什么想法吗?
(2)提问:你能把四个省(自治区)的面积改写成用“万平方千米”作单位的数,把四个省(自治区)的人口数精确到万位吗?
学生独立完成后集体交流。
(3)提问:请你分别按面积大小和人口多少,排列四个省(自治区)的顺序。学生独立完成后集体交流,说说是怎样比较大小的。
四、课堂总结
谈话:这节课我们复习了哪些内容?你有什么收获?还有什么问题?五、课堂作业
完成“练习与实践”第4、9题。
第2课时因数与倍数整理与复习
教学内容:
苏教版六下P70 “练习与实践”第10~14题,思考题。
教学目标:
1.学生通过回忆和整理,进一步明确因数和倍数的相关知识,加深认识相关概念之间的联系与区别,能求两个数的公因数和公倍数,并能运用这些知识解决相关实际问题。
2.学生在应用相关知识进行判断和推理的过程中,能说明思考过程,进一步培养归纳概括和演绎推理等思维能力,进一步增强分析问题和解决问题的能力。
3.学生进一步体会数学知识之间的内在联系,感受数学思考的严谨性和数学结论的确定性,激发学习数学的兴趣和学好数学的自信心。
教学重点:
掌握倍数和因数等相关概念,以及应用概念判断、推理。
教学难点:
理解相关概念的联系和区别。
教学过程:
一、揭示课题
1.回顾知识。
提问:上节课,我们已经复习了整数和小数的有关知识。
在整数知识里,我们还学习了因数和倍数,谁能来说说你是怎样理解因数和倍数的?一个数的因数和倍数各有什么特点?
结合学生交流,板书。
2.揭示课题。
引入:这节课,我们复习因数和倍数的相关知识。
通过复习,能进一步了解关于因数和倍数的知识,理解它们之间的联系和区别,并能应用这些知识。
二、基本练习
1.知识梳理。
提高:回想一下,在学习因数和倍数时,我们还学习了哪些相关的知识?学生回顾,交流,教师适当引导回顾。
提问:2、5、3的倍数各有什么特征?什么叫奇数,什么叫偶像?什么叫质数,什么叫合数?什么叫公因数和最大公因数?什么叫公倍数和最小公倍数?
根据学生回答,板书整理。
2.做“练习与实践”第10题。
学生独立完成,指名板演。
集体交流,让学生说说找一个数的因数和倍数的方法。
3.做“练习与实践”第11题。
出示题目,学生直接口答。
提问:怎样判断一个数是不是2的倍数?判断是3和5的倍数呢?
追问:这里哪些是偶数,哪些是奇数?说说你是怎样想的。
4.做“练习与实践”第12题。
学生先独立写出质数和合数,再指名口答。追问:最小质数是几?最小的合数呢?提问:怎样判断一个数是质数还是合数?
指出:在判断一个是质数还是合数时,要看这个数有哪些因数,根据质数和合数的含义作出正确判断。
5.完成下面各题。
(1)写出12和18的公因数,说出最大是几。
(2)写出6和8的公倍数,说出最小是几。
(3)求出下面每组数的最大公因数和最小公倍数。
指名学生口答第(1)(2)题,教师板书找公因数、公倍数的过程。让学生说明怎样找两个数的公因数和最大公因数,公倍数和最小公倍数。让学生独立完成第(3)题,交流方法并板书结果。提问:每组数各是怎样找最大公因数和最小公倍数的?
6.把12分解质因数。
让学生独立完成。
交流结果和方法,板书分解过程和结果。
三、综合练习
1.做“练习与实践”第13题。
指名读第(1)题。
谈话:同学们可以按要求先试着写一写,有困难的同学可以用数字卡片摆一摆,再写出来。学生尝试练习后同桌交流。
集体校对,引导学生明白可以有序思考,逐一列举。学生自由读第(2)题后独立解答。
指名口答,集体评议,结合说说有公因数2的数、有公因数3或5的数各有什么特点。
2.做“练习与实践”第14题。
指出:根据条件,可以知道总棵树比6的倍数少1,比5和4的倍数也都少1.启发:如果添上1棵,总棵树与6、5和4有什么关系?、学生尝试解答。
集体交流,让学生说说思考的过程。
四、课堂总结
交流:这节课我们复习了哪些内容?把你的收获和大家分享一下。
第3课时 分数、百分数的认识整理与复习
教学内容:
苏教版六下P71~72“整理与反思”、“练习与实践”第1~10题。
教学目标:
1.学生加深对分数和百分数的认识,进一步理解分数的基本性质以及分数与除法的关系,进一步掌握小数、分数和百分数的互相改写,以及求百分数的方法。
2.学生经历知识整理和应用的过程,进一步了解分数、百分数相关知识之间的内在联系,提高观察比较、分析判断能力和解决问题的能力,进一步发展数感。
3.学生进一步体会分数和百分数在日常生活中的应用以及作用,增强数学应用意识;
感受数学学习的乐趣,树立学好数学的信心。
教学重点:
加深理解分数、百分数的意义。
教学难点:
分数、百分数在实际生活中的应用。
教学过程:
一、揭示课题
谈话:前几节课我们一起复习了整数和小数的相关知识,这节课我们要对分数和百分数的相关知识进行整理和复习。
通过复习,要进一步认识分数和百分数的意义,体会它们之间的联系与区别,并能运用分数和百分数的相关知识解决一些实际问题。
二、回顾整理
1.回顾讨论。
提问:你了解分数和百分数的哪些知识?请大家联系下面的问题自己回顾整理,并且在小组里交流。
呈现以下四个问题:
(1) 什么叫分数?什么叫百分数?
(2) 分数和除法有什么联系?请你举例说明。
(3) 分数的基本性质是什么?你能用它来说明小数的性质吗?(4) 小数、分数和百分数怎样互相改写?
让学生围绕上面四个问题先独立思考,再在小组里讨论、交流。
2.组织交流,回答上面四个问题。
三、基本练习
1.做“练习与实践”第1题。
学生独立填写后指名口答,说明理由。
强调:分数是看平均分成多少份,表示这样的几分;小数是看表示的十分之几、百分之几、
千分之几??百分数是看这个数量占整体的百分之几。
2.做“练习与实践”第2题。
学生填写在书上,然后集体校对,让学生说说思考过程。
追问:第(2)题把一根绳子平均分成8段,为什么两次填写的结果不同?
3.做“练习与实践”第3题。
学生独立填写。
集体交流,让学生说说是怎样想的,并说一说每个百分数表示的意义。4.做“练习与实践”第5题。学生先尝试填写,再集体交流。提问:这两组数分别会越来越接近几?
指出:这两组数按规律可以无限地填下去,这样填写第一组数会越来越接近1,第二组数会越来越接近0.
四、应用练习
1.做“练习与实践”第6题。
学生读题,理解题意,先独立估计。
提问:你估计哪块花圃种玫瑰的面积所占的百分比最大?说说理由。指出:估计时,可以先想出相应的分数,再估计大小。
学生写出相应的百分数,并交流是怎样想的,再和估计的比一比。2.做“练习与实践”第7、8题。学生读题后独立解答,再集体交流。
提问:你能说说种子发芽率的具体含义吗?折扣表示什么?发芽率和折扣各是怎样求的?
3.做“练习与实践”第9题。
学生读题后,提问:你能根据所给信息,在图中表示出李华家上个月的支出情况吗?先独立思考并在图中表示。
五、课堂总结
1.交流小结。
提问:这节课我们复习了哪些内容?你有什么收获或体会?
2.布置作业。
课堂作业:完成“练习与实践”第4题,第9题第(2)小题,第10题。
常见的量
第4课时 常见的量整理与复习
教学内容:
苏教版六下P73“整理与反思”、“练习与实践”第1~6题。
教学目标:
1.学生进一步掌握质量、时间和人民币的单位及相邻单位的进率,能够根据实际选择、应用合适的单位;
掌握单位之间的简单换算,以及量的简单计算。
2.学生在整理、应用常见的量及量的单位过程中,进一步体会各个量的具体意义;
能说明对常见的量选择、分析、判断的理由,提高分析、判断和推理等思维能力。
3.学生在复习过程中进一步体会常见的量在日常生活中的应用,培养有据思考、判断、分析等良好的学习品质。
教学重点:
常见的量的归纳整理和应用。
教学难点:
掌握时间单位间的关系。
教学过程:
一、导入课题
引入:在我们的日常生产、生活和科学研究中,经常要接触各种量,并且进行各种量的计量。在小学阶段,我们学习过质量、时间和人民币这些常见的量和相应的计量单位。今天我们就复习这些常见的量。(板书课题)
通过复习,进一步认识质量、时间和人民币及相应的单位,了解各类量相邻单位的进率,进一步掌握单位间的简单换算,并提高计量单位应用的能力。
二、回顾整理
1.小组整理。
提问:常用的质量单位有哪些?(板书:质量)相邻单位之间的进率各是多少?常用的时间单位、人民币单位各有哪些?(板书:时间人民币)你能说说这些单位,以及相邻单位间的关系吗?请先独立整理,再小组交流。
学生整理,小组交流,教师巡视、指导。
2.集体交流。
(1)提问:你知道质量单位的哪些知识?
(2)提问:我们学习过哪些时间单位?你知道这些单位间的关系吗?说说你的认识。
提问:闰年有什么规律?怎样判断某一年是闰年还是平年?
提问:我们认识了哪两种计时法,这两种计时法有什么区别和联系?
24时计时法 普通计时法
(3)提问:关于人民币的单位你有哪些认识?
生:元 角 分
1元=10角1角=10分
三、基本练习
1.做“练习与实践”第1题。
学生直接填空。
集体反馈,指名说说分别填写了哪个单位,怎样想的。
指出:填写单位时,要先根据实际明确填写哪种量的单位,再根据具体物体选择合适的单位。
2.做“练习与实践”第2题。
学生先填写在书上,再指名口答结果,选择2—3题说说怎样想的。
提问:通过这题的练习,你对单位换算有了怎样的认识?
3.做“练习与实践”第3题。
学生先完成填空,再集体校队。
追问:每年第一季度的天数怎样计算?
四、应用练习。
1.做“练习与实践”第4题。
指名读题,理解题意。
学生独立计算。
集体校对,让学生说说是怎样计算的。
2.做“练习与实践”第5题。
学生读题,理解题意。
指名口答,让学生说出计算过程。
引导学生完整说出飞船进入预定轨道的时间时2012年6月16日18时55分。
3.做“练习与实践”第6题。
指名读题,理解题意。
学生独立解答。
集体交流,展示学生的解答过程及结果,要求说明怎样想的。
说明:像这样计算载重量的问题,一般要按较大数量计算,求出物体最重可能有多少,和能承载的重量比较、判断。
五、课堂总结
提问:这节课复习了哪些内容?通过这节课的复习,你有哪些收获?
第5课时 四则运算整理与复习
教学内容:
苏教版六下P74~75“整理与反思”、“练习与实践”第1~10题。
教学目标:
1.学生进一步掌握整数、小数、分数四则运算的法则及计算法则之间的联系,能选择口算、笔算、估算以及计算器等不同方法进行计算,进一步认识常见的数量关系,并能解决一些简单的实际问题。
2.学生在整理与复习的过程中,进一步了解计算原理,感受知识之间的内在联系,进一步体会基本的数量关系,提高运算能力,以及分析问题和解决问题的能力。
3.学生进一步养成独立、认真计算等学习习惯,培养按规则计算的品质,增强学习数学的积极性,体会学习成功的乐趣。
教学重点:
理解四则运算的意义和法则。
教学难点:
正确进行四则运算。
教学过程:
一、揭示课题
谈话:前几节课,我们只要复习了数的认识,今天开始我们要复习数的运算。这节课先复习数的四则运算。(板书课题)通过复习,同学们要熟悉掌握四则运算的法则,能选择不同方法进行计算,并能解决一些简单的实际问题。
二、知识梳理
1.小组讨论。
引导:通常所说的四则运算是指加法、减法、乘法和除法。想一想,整数、小数、分数加、减法分别怎样计算?整数、小数和分数乘、除法呢?先独立思考,找一些例子想一想,再在小组里交流你的想法。
学生各自整理后在小组里讨论。
2.集体交流。
(1)提问:整数加、减法是怎样计算的?小数加、减法,分数加、减法呢?
追问:你能说说这些计算方法之间的联系吗?
生交流,汇报。
(2)提问:怎样计算整数、小数和分数的乘、除法?你能举出一些例子吗?
结合学生交流,用简单的例子说明,进一步明确法则。
提问:小数乘、除法计算和整数乘、除法有什么联系?要注意什么问题?
学生交流,总结。
提问:分数乘、除法计算有什么联系?
指出:分数乘法用分子相乘的积作分子,分母相乘的积作分母;分数除法用被除数乘除数的倒数,转化成分数乘法后按分数乘法的方法进行计算。
三、基本练习
1.做“练习与实践”第1题。
直接写出得数。
选择部分题目让学生说说计算的方法,进一步明确计算方法。
2.做“练习与实践”第2题。
独立计算,并指名板演。
提问:比较每组两题的计算方法,你有什么发现?
3.做“练习与实践”第4题。
学生自由读题,独立思考分别选择哪种算法。
提问:每小题各适合口算、笔算、估算,还是用计算器计算?
指名口答,并说出想法。
四、应用练习
1.做“练习与实践”第5题。
出示表格,提问:从这张表中你能知道些什么?
学生回答后独立计算、填表。
集体交流结果,说明算法并呈现表里的结果。
提问:这里应用的是哪一组常见的数量关系?你能说出单价、数量和总价这一组数量关系式吗?
2.做“练习与实践”第6题。
学生读题,理解题意。
学生各自解答,指名板演。
集体校对,说明按怎样的数量关系解答的。
提问:这里应用的是哪一组常见的数量关系?能说出这一组数量关系式吗?
3.做“练习与实践”第9题。
出示情景图,提问:从图中你能知道哪些数学信息?
引导学生明确信息。
出示问题(1),学生独立思考、解答。
集体交流,让学生说说思考过程,说明可以用笔算,也可以用估算得出结论。
出示问题(2),学生独立解答。
集体交流,让学生说说思考过程,并板书算式、得数。
提问:你还能提出什么问题?
4.做“练习与实践”第10题。
出示统计表,让学生说说表中的信息。
提问:怎样比较他们的成绩更合理?把你的想法在小组里交流。
小组讨论后集体交流,指名说出合理的想法及理由。
学生各自计算,求出各人助跑摸高的厘米数想法于身高的百分之几,再比较得到的百分之几。出示问题(2),学生独立解答,提示可以用计算器计算。
五、课题总结
1.总结交流。
提问:通过这节课的复习,你有哪些收获?这些知识之间有什么联系?
2.课堂作业。
完成“练习与实践”第3、7、8题。
第6课时 四则混合运算整理与复习(1)
教学内容:
苏教版六下P76“整理与反思”、“练习与实践”第1~5题。
教学目标:
1.学生进一步认识整数、小数、分数四则混合运算的运算顺序,能按运算顺序正确进行运算;
进一步理解和掌握学过的运算定律和一些规律,并能应用运算定律或规律进行简便运算。
2.学生进一步增强观察、辨析能力和合理、简捷运算的能力,进一步培养分析问题、解决问题的能力。
3.学生通过计算、观察、比较、交流等活动,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感。
教学重点:
四则混合运算的运算顺序;理解和掌握运算律和一些规律。
教学难点:
灵活选择合理、简捷的算法。
教学过程:
一、谈话导入,揭示课题
谈话:上节课,我们一起回顾整理了加、减、乘、除四则运算的意义、关系,以及计算法则。今天这节课,我们在此基础上继续复习四则混合运算。(板书课题)
二、整理知识,沟通联系
1.复习运算顺序。
出示“练习与实践”第1题。
(1) 指名学生说说每题的运算顺序。
提问:能说说四则混合运算的运算顺序吗?请同桌相互说一说。
集体交流四则混合运算的运算顺序。
(2)学生独立计算,教师巡视、指导。
集体校队,做错的同学自己订正。
2.复习运算律。
(1)引导:在四则混合运算里,我们学习过运算律。回忆一下,我们学过哪些运算律?你能举例说明吗?小组讨论,按要求把课本上的表格填写完整。
小组讨论、填表。
集体交流,结合学生回答,板书呈现填表。
(2) 做“练习与实践”第2题。
学生独立计算,指名板演,教师巡视、知道。
集体校对,让学生说说每题是怎样想的,分别运用了什么运算律或规律。
说明:在计算时,如果应用运算律或运算规律,能先把其中的小数、分数计算凑成整数,或者能把一些计算凑成整十、整百的数使计算变得简单,就可以选择合理、简单的算法,使计算简便。追问:你觉得应用简便计算要注意些什么?
(3)下面各题,怎样算简便就怎样算。
学生计算,指名板演。
交流算法,要求说明计算方法和依据。三、实际应用,内化提升
1.做“练习与实践”第3、4题。
指名读题,理解题意。
学生独立列综合算式解答,指名板演,教师巡视、指导。
集体校对,让学生说说每题分别是怎样想的,先算什么,再算什么?2.做“练习与实践”第5题。
学生读题,让学生说说题中的条件和问题。学生各自列综合算式解答,教师巡视,指导。集体交流,让学生说说每一步算的是什么。四、回顾反思,总结全课
提问:同学们回顾一下,这节课我们复习了哪些内容?你有什么收获与体会?
第7课时 四则混合运算整理与复习(2)
教学内容:
苏教版六下P77 “练习与实践”第6~10题。
教学目标:
1.学生进一步理解和掌握稍复杂的分数、百分数实际问题的数量关系和解题思路,能正确解答稍复杂的分数、百分数实际问题。
2.学生进一步认识分数、百分数实际问题的特点和解题方法,进一步体会分数、百分数实际问题的内在联系;
能说明分析问题的过程,提高比较、分析、推理、判断等思维能力,增强分析问题和解决问题的能力。
3.学生加深体会分数、百分数在现实世界的实际应用,增强数学应用意识,提高学习数学的兴趣和学好数学的自信心;
培养独立思考、主动交流的学习习惯。
教学重点:
稍复杂的分数、百分数实际问题的数量关系和解题方法。
教学难点:
理解各类分数、百分数实际问题的数量关系和解题思路。
教学过程:
一、揭示课题
谈话:上节课,我们复习了四则混合运算和运算律。这节课我们要复习分数、百分数的实际问题。(板书课题)通过复习,要进一步理清分数、百分数实际问题的数量关系和解题思路,掌握解题方法,提高解决分数、百分数实际问题的能力。
二、基本练习
1.根据下列问题找出单位“1”的量,并说出数量关系式。
(1)桃树棵树是梨树的几分之几?
(2)桃树棵树比梨树少几分之几?
(3)实际产量超过了计划的百分之几?
(4)实际降价了百分之几?
指名学生口答,并说说单位“1”的量是怎样找的。
2.根据条件找出单位“1”的数量,说出数量关系式。
说明:根据上面这样的条件,可以确定单位“1”的量,用单位“1”的量乘几分之几或百分之几,等于几分之几或百分之几的对应数量。三、应用练习
1.解答下列各题。
(1)李大爷收白菜300千克,已经售出240千克,已经售出几分之几?
(2) (题略)(3)(题略)
出学生读题,思考每题应怎样解答。
提问:这三题里表示单位“1”的量是哪个数量?为什么解答这三题的计算方法不相同?
2.解答下面各题。
你能列出每题的算式吗?请你说一说。
追问:为什么第(1)题只有一步计算,第(2)题要两步计算?解答分数、百分数实际问题要注意什么?
3.做“练习与实践”第7题。
学生读题后独立解答,指名板演,教师巡视、指导。集体校对,让学生说出解题思路,再说说有没有不同解法。
4.对比练习。
出示:(1)某市修建一条12千米长的高架公路,已经修了全长的60%,还有多少千米没有修?
(2)某市修建一条高架公路,已经修了全长的60%,还有4.8千米没有修。这条高架公路长多少千米?
指名读题,说说两题中的条件和问题。提问:这两题有什么相同点和不同点?交流解法,教师板书算式和结果。
结合交流要求学生说说这两题分别是怎样想的。追问:这两题的解题方法为什么不同?
5.做“练习与实践”第8题。
(1)学生读题,说说已知什么条件,第(1)题要求什么。让学生列式解答,指名板演。
交流:求一、二等奖的奖券一共多少张可以怎样想?这里每一步求的什么?
(2)让学生提出不同的问题,选择板书。
选择一个球两种奖券相差多少张的问题让学生解答。交流:你是怎样列式的?这个算是里每一步求的是什么?
6.做“练习与实践”第9题。
学生读题后独立解答。集体交流,让学生说说每道题的解题思路,教师板书算式和结果。提问:比较这三个实际问题,在解法上有什么联系和区别?
四、全课总结
这节课复习了什么内容?通过这节课的复习,你又有哪些收获?还有什么问题呢?2.课题作业。“练习与实践”第6、10题。
第8课时 解决问题的策略整理与复习(1)
教学内容:
苏教版六下P78~79“整理与反思”、“练习与实践”第1~5题。
教学目标:
1.进一步明确解决问题的一般步骤,能按一般步骤解决实际问题;
了解小学阶段学习的解决问题的策略;能应用从条件或问题想起的策略分析数量关系并列式解决实际问题;能根据条件提出相应的问题。
2.能用从条件或问题想起的策略说明解决问题的思路,进一步体会实际问题数量之间的联系,培养学生分析、推理等思维能力和解决问题的能力。
3.进一步感受数学知识、方法在解决实际问题里的应用,体会解决问题策略的应用价值;
培养勤于思考、善于思考的学习品质。
教学重点:
用从条件或问题想起的策略分析数量关系。
教学难点:
正确分析数量关系。
教学过程:
一、引入课题
谈话:今天的复习内容,是我们小学阶段学过的解决实际问题。通过今天的复习,要进一步掌握解决问题的一般步骤,整理并掌握学习过的解决问题的策略。对策略的应用,今天着重复习从条件想起、从问题想起分析数量关系的策略,能掌握分析方法,正确说明解决问题的思路并且解答实际问题,提高分析和解决问题的能力。
二、整理与反思
1.回顾讨论。
引导:大家先回顾一下学过的解决问题知识,同桌互相讨论、交流:解决实际问题的一般步骤是怎样的?我们学习过解决问题的哪些策略?可以联系实际问题讨论一下,这些策略在解决什么问题时用过。
2.交流认识。
(1)交流解决问题的步骤。
提问:大家回顾了学过的解决问题的步骤和策略,能说说解决实际问题时的一般步骤是怎样的吗?
(2)交流解决问题的策略。
提问:我们学习过解决问题的哪些策略?可以结合举出一些例子来说一说。你认为学习解决问题的策略有什么作用?
指出:从条件或问题想起分析数量关系是基本策略,有些问题还要通过列表、画图或者列举、转化、假设的策略才能清楚地找到解决问题的方法。所以学习策略可以帮助我们更清楚地了解数量间的联系,找出解决问题的方法。
三、练习与实践
1.做“练习与实践”第1题。
(1)让学生独立阅读第(1)(2)题。
让学生分别说一说每题的条件和问题,说说两道题哪里不一样。
(2)引导:这两题你能怎样想的?自己先思考准备怎样想,再同桌互相说说你的想法,看看有没有不同的想法,要先求什么,再求什么。
提问:你能说说第(1)题可以怎样想吗?还能怎样想?指名几个学生从条件想起说一说是怎样想的。提问:第(2)题你是怎样想的?有不同的想法吗?指名几个学生从问题想起说一说是怎样想的。
(3)学生独立解答,指名板演。
检查列式过程,让学生说说各题的每一步求出的什么。
提问:两题的问题都是求长袖衬衫的单价,为什么解答过程不一样?(4)引导:通过上面两题的解答,你有哪些体会?
2.做“练习与实践”第2题。
(1)让学生独立读题,了解题意。
引导学生观察图形,结合图形说说第(1)题小芳走过的路线是怎样的,第(2)题两人是怎样行走的。
引导:先看看小芳和小军的速度各是多少,想想两人大致在哪里相遇,在图上用一个点表示出来。交流:你估计大致在哪里相遇,怎样想的?
(2)让学生列式解答两个问题,教师巡视、指导。
①交流:第(1)小题是怎样列式的?这样列式是怎样想的?有没有不同的列式?这样列式又是怎样想的?
说明:解答实际问题,有时有不同的解答方法,这是因为分析方法不同,解决问题的过程或方法就可能不一样。
②交流:第(2)题怎样列式?这是根据什么数量关系列式的?也有不同的解法吗?这又是根据什么数量关系列式的?追问:这两种解法有什么联系?
解答上面两题,都和哪个常见的数量关系有关?
3.做“练习与实践”第4题。
让学生读题,说说从表格里的对应数值能知道什么,要解决什么问题。
引导:你能解决这个问题吗?自己想办法解答。交流:你是怎样解答的?这是怎样想的?还有不同的解答方法吗?这又是怎样想的?
提问:这两种解法思路有什么不同?能说说两种解法分别是先求的什么、再求的什么吗?
4.做“练习与实践”第5题。
让学生独立读题,摘录整理条件和问题。交流:你是怎样整理的?提问:根据整理的条件和问题,这题可以怎样想?说一说你的想法。追问:你认为整理的条件和问题,对于解决问题有什么好处?
四、总结与作业
1.总结交流。
今天复习了解决问题的哪些内容?通过整理与练习,你有哪些收获?
2.布置作业。
完成“练习与实践”第3题和第5题。
第9课时 解决问题的策略整理与复习(2)
教学内容:
苏教版六下P79“练习与实践”第6~9题。
教学目标:
1.学生能应用画图、列表、转化等策略分析和解决实际问题,能根据问题特点选择不同策略分析数量关系、列式解答,并能解释和说明自己所用的策略。
2.学生能依据相应的策略说明分析实际问题数量关系的思考过程,提高灵活、综合应用策略的能力,培养思维的深刻性和灵活性,发展分析、推理等思维和几何直观,以及分析问题、解决问题的能力。
3.学生进一步感受现实生活存在各类数学问题,体会解决问题策略的实际应用,培养学生面对实际问题用数学方法分析、处理的意识。
教学重点:
用画图、列表、转化等策略解决实际问题。
教学难点:
灵活选择策略解决实际问题。
教学过程:
一、揭示课题
谈话:上一节课我们复习了解决问题的相关内容,并且重点应用了从条件或问题想起的策略解决实际问题。今天继续复习解决问题,主要应用画图、列表的策略解决问题,并且能自己选择策略灵活地解决实际问题。
二、练习与实践
1.做“练习与实践”第6题。
(1)让学生读题,利用图形理解条件和问题。
交流:你知道了题里有哪些条件,要解决什么问题?(出示图形,根据交流注明长、宽的条件) 这块长方形菜地分成的两个部分各是什么形状的?
引导:要计算这里三角形的面积和梯形的面积,你能根据题里的条件在图上画一画,找到解决问题的思路吗?想一想怎样画,自己画一画。交流:你是怎样画的?
为什么想到在三角形的顶点画宽的平行线段?
说明:通过交流,我们知道根据黄瓜的面积比番茄面积少180平方米这个条件,可以在梯形中画出一个和种黄瓜的三角形地完全一样的三角形地块,这样就能直接看出黄瓜比番茄少的面积是右边这个长方形地块。让画法不合理的订正自己的画法。
(2)引导:现在你能看图说一说,解决这个问题可以怎样想吗?在四人小组里互相讨论,找找可以怎样解答这个问题。
交流:哪些同学想到了解决这个问题的思路?和大家交流一下。
结合交流,帮助学生理解不同思路。
(3)让学生选择一种思路解答,指名不同解法的学生板演。
引导学生结合图形分别说说不同解法中每一步算的什么。
(4)提问:我们刚才画图对于解答问题有什么好处?
2.下面的问题用哪个策略解决比较合适?请你应用恰当的策略解答。
出示:一个长方形长8分米,宽6分米。如果把一条长缩短到原来的一半,或者把一条宽缩短到原来的一半,都能得到一个梯形。这两个梯形面积会相等吗?算一算、比一比。
提问:想想这个图形分别怎样变化的,能用什么策略解决,用你想到的策略算一算、比一比,解决问题。学生独立解答,教师巡视、指导。
交流:你用了什么策略?怎样画图的?这两个梯形面积相等吗?你是怎样计算的?
说明:用画图的策略能找到相应的条件,计算各自的面积。这里虽然长方形通过不同的变化得到的梯形不同,但面积是相等的。
3.做“练习与实践”第7题。
提问:你能说说题里告诉我们什么,要解决什么问题?
引导:大家想一想杨大爷步行的过程,思考解决问题还需要什么条件;再列表或画图表示行走过程,看看从表里或图中能知道什么新条件。学生列表或画图,教师巡视、指导。
交流:你是怎样列表的?画图的是怎样画图表示的?
引导:大家先观察列出的表格或画出的图形,思考能得出哪个条件,可以怎样解决问题,各人独立解答。交流:你是怎样解答的?
你结合列表或画图,说说这里的每一步是怎样想的吗?列表或画图在解题过程中有什么作用?
4.做“练习与实践”第8题。
(1)让学生先根据题意补充线段图,再同桌交流怎样补充的,讨论怎样解答,有没有不同解答方法,然后选择一种方法解答。
学生画图、交流并解答,教师巡视,指名不同算法的学生板演。
(2)交流:线段图是怎样补充完整的?
你能联系线段图理解这里的不同解法,说说每种解法是怎样想的吗?自己观察、思考,不明白的可以合同学交流。提问:你能说说这些解法各是怎样想的吗?
指名交流,引导学生结合图形理解不同解法。
比较:哪种解法更方便一些?这里应用了哪个策略?
5.做“练习与实践”第9题。
学生读题,要求交流条件和问题。
提问:下面的线段图表示了哪些条件?还有什么条件没有表示出来?引导:根据从第一筐取出2放入第二筐,两筐苹果就同样重这个条件,表示第二筐苹果多重的线9
段怎样画呢?先看表示第一筐的线段想一想,再画一画。学生画图,教师巡视、指导。
交流:根据条件,表示第二筐苹果有多重的线段怎样画的?说说你的想法。
引导:请你看线段图,想想这两筐苹果的千克数之间有什么关系,能怎样解答,然后用你想到的方法解答出来。如果与困难,可以讨论讨论。学生解答,教师巡视、指导。
交流:你是怎样解答的?用了什么策略?
结合交流板书算式,并引导学生理解不同解法。反思:通过解答这道题,你有哪些体会?
三、总结交流提问
回顾今天解决问题的内容和过程,都应用了哪些策略?你对画图、列表、假设和转化这些策略的应用,有哪些新的认识?还有哪些收获?
第10课时 解决问题的策略整理与复习(3)
教学内容:
苏教版六下P80 “练习与实践”第10~13题,思考题。
教学目标:
1.学生能应用假设、列举等策略分析和解决实际问题,能根据问题特点选择恰当的策略或综合运用策略解决实际问题,并能解释和说明选择的策略和思路。
2.学生能根据策略说明分析问题的思考过程,提高根据问题特点灵活选择、应用策略的能力,提高分析、推理等思维能力和解决问题的能力。
3.学生加深对数学和现实生活联系的体会,进一步体会数学策略、方法在解决实际问题中的应用价值,培养应用数学策略的意识。
教学重点:
用假设、列举等策略解决问题。
教学难点:
根据问题特点选择合适的策略解决问题。
教学过程:
一、揭示课题
谈话:前两节课我们复习了解决问题的相关内容和策略,主要复习了应用从条件或问题想起、画图、列表和转化等策略解决实际问题。今天继续复习解决问题,主要应用假设、列举等策略解决问题,了解一些实际问题特点和相应的策略,提高解决问题的能力。
二、练习与实践
1.做“练习与实践”第10题。
要求学生读题,看懂表格里的意思。
提问:能说说习题的意思吗?表格里已经填写的分别表示的是什么?
引导:请你在表格里填一填,看看是怎样变化的,经过几次白子和黑子枚数相等,然后根据填表的过程想想可以怎样列式解答,自己列式计算。
学生独立填表,列式解答。
交流:你是怎样填表的?用列表的方法,可以看出这样取放多少次后,白子与黑子正好相等?你是怎样列式的?能说说怎样想的吗?
追问:解答这道题时用的什么策略?
2.做“练习与实践”第11题。
让学生说说题里告诉哪些条件,要求什么问题。
提问:把长90米的绳子分成的三段长度有什么关系?
引导:你准备怎样理清三段绳长的关系,怎样解决问题?同桌讨论一下。
交流:你准备怎样理清绳长的关系?你想怎样解决问题呢?可以有哪些假设的方法?
引导:请你选择一种假设的方法,列式解答。
交流:你怎样假设的?说说你的算式。
用不同假设的同学来说说你的方法。
提问:解答这个问题用了哪些策略?
3.做“练习与实践”第12题。
让学生观察、阅读,把情境组织成实际问题。
引导:你想怎样解答?自己想一想可以用什么策略解决,然后列式求出结果。
学生解答,教师巡视、指导,指名学生板演。
交流:大家看看这里是怎样解答的,用了什么策略?
追问:你是怎样假设的?
提问:还可以怎样假设?哪位同学用了这样的假设策略的?说说你的解答过程。
追问:假设的方法虽然不同,但都是根据哪个条件假设的?
4.用恰当的策略解决下列问题。
出示:货场要运货50吨,用2辆大货车和6辆小货车正好运完。一辆大货车的载重量比一辆小货车多3吨,大货车的载重量是多少吨?小货车呢?
提问:这道题和上面的有什么不同?
引导:想想可以用什么策略解决,自己解答。有困难的可以讨论。
学生解答,教师巡视,指名不同假设方法的学生分别板演。
交流:解答这道题能用什么策略?可以怎样假设呢?
哪一种解法假设都是小货车的?怎样思考的?
假设都是大货车时要注意什么呢?这里每一步表示的什么意思?
提问:这里用假设策略时要注意什么?
5.做“练习与实践”第13题。
(1)指名学生读题。
引导:你能按要求先在表里假设两种门票的张数,再通过调整找出答案吗?那请你自己假设、调整找出答案。
学生假设完成,教师巡视。
交流:你是怎样假设的?这样假设后怎样调整的?
还有假设不同的张数再调整的吗?
提问:调整时,每张按多少元调整的?
(2)引导:你能用假设的策略列算式解答吗?自己列式解答。
学生列式解答,教师巡视,指名不同假设策略的同学板演。
引导:两种解法,你用了哪一种,怎样想的?;另一种呢?
三、拓展提高
解决思考题。学生说明条件和问题。
引导:想一想可以用怎样的策略解决问题,用你想到的策略解决,看看能不能得出结果。如果有困难,可以在四人小组里讨论方法。学生解答,教师巡视、交流指导。
交流:你得出的结果是几比几?你是怎样解答的?
四、总结交流
提问:这节课主要用到了哪些策略?能根据上面的练习说说哪些题适合用假设策略,哪些题适合用列举策略吗?
第11课时 式与方程整理与复习(1)
教学内容:
苏教版六下P81~82“整理与反思”、“练习与实践”第1~4题。
教学目标:
1.学生加深理解用字母表示数的意义及方法,进一步体会方程的意义及方程与等式的关系,会用等式的性质解方程,能列方程解答简单的实际问题。
2.学生进一步提高用字母的式子表示数量关系的能力,增强符号意识,体会方程思想;
进一步提高分析问题和解决问题的能力。
3.学生主动参与整理和练习等学习活动,进一步感受数学与日常生活的紧密联系,体验学习成功的乐趣,发展数学学习的积极情感。
教学重点:
掌握方程的意义及解方程的方法。
教学难点:
用含有字母的式子表示数量关系。
教学过程:
一、谈话导入
谈话:这节课,我们复习“式与方程”的有关知识。(板书课题)
今天主要复习其中的字母表示数、方程的意义和解方程,并且列方程解决一些简单的实际问题。通过复习进一步掌握用字母表示数,提高解方程和列方程解决简单实际问题的能力。
二、回顾整理
1.复习用字母表示数。
(1)回顾举例。
提问:你能举出一些用字母表示数的例子吗?先独立思考,再与同桌交流。
小组交流后组织汇报,教师相应板书:
①表示计算公式,如C=2(a+b)。
②表示运算律,如a+b=b+a.
③表示数量关系,如s=vt。
提问:用字母可以表示这么多的内容,那么在用字母表示数的乘法式子里,你觉得应该提醒大家注意些什么?
(2)做“练习与实践”第1题。
学生独立在书上完成,教师巡视、指导。
集体订正,选择几题让学生说说是怎样想的。
追问:第(3)题是怎样根据a=3求周长4a和面积a各是多少的?
提问:列含有字母的式子,是根据数量之间的联系,用字母表示数列出相应的式子。求含有字母式子的值,只要把字母的值直接代入式子计算结果。
2.复习方程与等式。
(1)复习方程的概念。
下面的式子中,哪些是方程,哪些不是方程?为什么?
3x=15 x-2 x-2420x= 921
18÷3=6 16+4x=40 a+4
提问:根据刚才的判断,你能说说什么是方程吗?一个式子是方程,必须具备什么条件?方程与等式有什么关系?请你说一说,并从上面式子中找出例子说明。
根据学生回答呈现集合体。
帮助学生进一步理解:方程是含义未知数的等式;方程是等式,等式不一定是方程。
(2)复习等式的性质及解方程。
①等式的性质。
提问:等式的性质有哪些?等式的性质有什么应用?
提问:怎样应用等式的性质解下面的方程?说说你的想法。
出示:x-3=15 0.5x=1 x÷1=2 2
根据学生说明板书解方程。
指出:根据方程里已知数和未知数的关系,应用等式的性质使方程左边只剩下x,就能求出方程的解。
②做“练习与实践”第2题。
学生观察第2题。
提问:你会解这些方程吗?请你独立解方程。
学生解方程,指名板演。
集体校对,让学生说说解方程的思路。
指名说说检验的方法,选择一题板演检验过程。
提问:解方程与方程的解有什么区别?请你选择一题说说它们的区别。
3.复习列方程解决实际问题。
(1)谈话:学习方程是为了用它解决生活中的实际问题,请同学们回忆一下,列方程解决实际问题的一般步骤有哪些?你认为最关键的是哪一步?
结合学生回答,教师板书:
第一步:弄清题意,用x表示未知数。
第二步:找出等量关系。
第三步:列出方程并解方程。
第四步:检验,写答句。
(2)说出下面各题中数量之间的相等关系。
①果园有桃树和柳树共1000棵。
②红花比黄花少25朵。
③学校航模组的人数是美术组的3倍。
④花金鱼比黑金鱼的1.2倍还多8条。
让学生独立思考,指名说出等量关系,明确要根据条件表示的意思确定数量间的相等关系。
三、巩固深化
1.做“练习与实践”第3题。
学生读题后独立解答。
集体交流,学生说出解题思路,教师板书等量关系和方程,并解方程。
说明:这题的关键是根据条件找出等量关系,再根据等量关系列出方程。
2.做“练习与实践”第4题。
学生读题,理解题意。
提问:鞋的码数与厘米数之间有怎样的关系?
学生独立完成,把书上的表填写完整。
集体交流,让学生说说是怎样思考的。
追问:求b的码数和求a的厘米数有什么不同?
四、课堂小结
这节课我们复习了哪些知识?你有什么收获?
第12课时 式与方程整理与复习(2)
教学内容:
苏教版六下P82“练习与实践”第5~9题。
教学目标:
1.学生进一步掌握列方程解决实际问题的步骤和思路,能根据题意说呢数量间的相等关系,正确地列方程解答相关实际问题。
2.学生在分析问题、解决问题的活动中,进一步提高分析数量关系和用方程表示数量关系的能力,体会,模型思想,积累解决问题的经验,发展数学思考。
3.学生进一步体会列方程解决实际问题的意义和价值,感受数学与现实生活的联系,培养应用意识;
在应用知识的过程中体验成功的乐趣,激发数学学习的兴趣。
教学重点:
列方程解决实际问题。
教学难点:
分析和理解实际问题的数量关系。
教学过程:
一、揭示课题
谈话:这节课,我们继续复习方程的相关知识,主要复习列方程解决实际问题。(板书课题) 通过复习,进一步掌握列方程解决实际问题的方法,提高用方程解决实际问题的能力。
二、基本练习
1.解答下列问题。
引导:上节课已经复习过列方程解决简单的实际问题,现在再看一道题,大家独立列方程解答,并想想按怎样的步骤解答的,关键是哪一步。
出示:甲、乙两地间的公路长240米,一辆汽车从甲地开往乙地,行驶了1.5小时后离乙地还有75千米。这辆汽车的速度是多少千米╱时?
学生独立读题并列方程解答,指名板演。
交流:这题是怎样解答的?说说是怎样想的。
方程是根据怎样的等量关系列出来的?
还能找出怎样的等量关系?根据这个等量关系可以怎样列方程?
2.把下列各题中数量间的相等关系填写完整,并列出方程。
(1)学校书法组有42人,比音乐组的2倍少4人。音乐组有多少人?
=书法组人数
=4人
(2)学校书法组和音乐组一共42人,书法组人数是音乐组的2倍。书法组和音乐组各有多少人?书法组和音乐组一共的人数
学生独立读题,完成数量关系式,设未知数并列出方程。
指名学生说出等量关系,设未知数为x,口头列出方程;根据交流呈现等量关系式和相应的方程。追问:方程是根据什么列出的?
三、应用练习
1.做“练习与实践”第5题。
学生读题,理解题意。
学生独立解答,教师巡视,指名列不同方程的学生板演。
集体交流,让学生说说这是哪一类实际问题,不同方程相应的等量关系各是怎样的,检查列方程解题过程。
2.做“练习与实践”第6题。
学生读题后独立解答。
集体交流,让学生说说解答这题的数量关系式和方程,教师板书。
3.出示:水果店运来苹果的千克数是橘子的3倍,一共480千克。
运来橘子多少千克?
引导:同桌相互说说数量之间的相等关系,应该怎样列方程。
提问:这里数量间有怎样的相等关系?方程怎样列的?
4.做“练习与实践”第7题。
学生读题后独立解答,指名板演。
集体交流、评议,让学生说说思考的过程,应该怎样找数量间的相等关系。
5.做“练习与实践”第8题。
指名学生读题,说说题中的条件和问题。
提问:你能说说“甲种衬衫按四折销售”和“乙种衬衣按五折销售”的意思吗?
学生独立解答,教师巡视、指导。
集体交流,提问:这题中单位“1”的量是什么?数量关系式应该怎样列?
引导:比较第7、8题,为什么都用方程解答?列方程时怎样表示题里两个未知数量的?
四、拓展练习
出示“练习与实践”第9题,引导学生了解题意。
(1)出示数表和3个方框。
①让学生按横框直接在书上的数表里框4个数,同桌相互说说自己框的4个数之间有什么关系。要求再框几次,验证自己发现的关系,看看能发现什么规律。
提问:这样每次框出的4个数之间有什么关系?
如果用a表示框里的第一个数,后面3个数分别怎样表示?自己想一想、填一填。
交流:你是怎样填的?说说你的想法和填的结果。
引导:这4个数的和可以怎样表示?
学生计算,教师巡视。
集体交流,教师相机板书:4a+6。
②引导:请每人分别用另两个长方形框连续框几次,看看又能发现什么规律,在下面每个相应的框里表示其余3个数,看看和可以怎样表示。如果有困难,可以同桌商量完成。
学生活动,教师巡视、指导。
集体交流,让学生说说填写的结果及思考的过程,呈现并板书交流的结果。
(2)框数、猜数游戏。
出示第(2)题,了解要求。
引导:框出4个数算出它们的和,能不能按刚才表示4个数和的式子,说出4个数各是多少呢?谁愿意来报出一组4个数的和,大家想一想这4个数分别是多少?
指名一人报出和,其余学生说出4个数,交流结果和思考方法,引导学生了解可以根据表示和的式子试着列方程,看能根据哪个式子列出方程求出结果。
要求:现在同桌两人一组,一人框4个数说出和,另一人说出这4个数;两人交换进行游戏。学生活动,教师巡视、指导。
提问:根据4个数的和说出4个数各是多少,其实是用到了什么知识?
五、课堂总结
提问:这节课复习了什么内容?你又有哪些新的认识和收获?还有什么不懂的问题?
第13课时 比和比例整理与复习
教学内容:
苏教版六下P83~84“整理与反思”、“练习与实践”第1~6题。
教学目标:
1.学生进一步巩固比和比例的意义、性质,加深认识比和分数、除法之间的联系;
进一步认识比例尺,巩固解比例的方法,能应用比和比例的知识解决有关实际问题。
2.学生在回顾整理与练习应用的过程中,进一步认识知识的内在联系,加深对数量比较的认识,提高分析、推理、判断等思维能力,增强运用比和比例知识解决实际问题的能力。
3.学生在复习过程中感受数学知识系统性的特点,体验数学与生活实际的密切联系,培养学生的数学应用意识,激发学生学习数学的自信心。
教学重点:
比和比例的意义、性质及应用。
教学难点:
正确解答有关比和比例的问题。
教学过程:
一、揭示课题
谈话:这节课我们要对比和比例的相关知识进行整理和复习。在整理与复习过程中,同学们要主动回顾、整理比和比例的知识,系统掌握比和比例的知识及应用,进一步增强运用比和比例知识解决实际问题的能力。
二、知识梳理
1.唤醒记忆。
提问:请同学们回忆一下,我们学过了比和比例的哪些内容?
学生自由回答,教师相应板书。
2.复习比的知识。
(1)出示问题:
①什么是比?什么是比的基本性质?用比的知识可以解决哪些实际问题?
②比和分数、除法有什么联系?
③什么叫求比值?什么叫化简比?请你举例说明。
学生在小组里交流,互相补充、修正,教师巡视、指导。
(2)全班交流。
①什么是比?什么是比的基本性质?用比的知识可以解决哪些实际问题?
结合交流,教师相应板书。
②引导:比和分数、除法有什么联系呢?请你填写课本上的式子,相互说一说它们之间的联系和区别。
集体交流,教师相应板书。
提问:能根据这个式子说说比和分数、除法之间的联系吗?它们有什么区别?
提问:比的基本性质是什么?比的基本性质与分数的基本性质、商不变的规律有什么联系? 交流小结比的基本性质,依据相互间的联系说明比的基本性质与商不变的规律、分数的基本性质本质上是相同的。
③什么叫求比值?什么叫化简比?求比值和化简比的依据和结果有什么不同?
结合交流,教师相应板书。
(3)做“练习与实践”第1题。
学生独立完成,填写在书上。
集体交流,让学生说说是怎样想的。
3.复习比例的知识。
(1)出示问题:
①什么是比例?什么是比例的基本性质?写出一个比例说说自己的认识。
②什么是解比例?怎样应用比例的基本性质解比例?举例说一说。
③什么是比例尺?根据比例尺求图上距离或实际距离的方法是怎样的?
小组讨论、交流。
(2)按出示的问题全班交流,结合学生回答,相应板书。
三、组织练习
1.做“练习与实践”第2题。
出示第(1)题,学生根据要求先量出每副图片的长和宽,并写出长和宽的比。
集体交流,有错的同学订正。
提问:估计哪两个比能组成比例?你是怎样估计的?
让学生算一算,写出比例。
交流写出的比例,说明能组成比例的理由,并与估计结果比较。
2.做“练习与实践”第4题。
(1)出示统计表。
引导:你理解表中每个百分数的含义吗?选择几个百分数,在小组里相互说说它的含义。 小组交流后指名汇报,选择2至3个百分数说说含义。
(2)出示问题(1)。
指名学生口答,并让学生说说思考的过程。
(3)提问:从表中还能获得哪些信息?你还能提出哪些问题?
学生小组讨论后集体交流。
3.做“练习与实践”第5题。
(1)学生读题,理解题意。
让学生自己写出比,并求出每种地砖的铺地面积。
交流:两种地砖面积的比是怎样的?说说你的方法。
(2)提问:求两种地砖铺地面积是怎样的问题?你是怎样解答的?
结合学生回答,教师板书算式、得数,并让学生说说每一步求的什么?
提问:按比例分配实际问题有什么特点?解答时通常应该怎样想?
4.做“练习与实践”第6题。
指名学生读题,了解题意。
要求学生独立操作、计算,教师巡视、指导。
集体交流,让学生说说是用怎样的方程计算的,注意理解不同的思路、方法。
追问:这里不同的解题方法各是怎样想的?
四、课堂总结
提问:今天这节课我们复习了哪些内容?在整理与复习的过程中,你又有了哪些收获和体会?
第14课时正比例和反比例整理与复习
教学内容:
苏教版六下P84~85 “练习与实践”第7~10题。
教学目标:
1.学生进一步认识成正比例和反比例的量,掌握两种量是否成正比例或反比例的思考方法,能正确判断两种量成不成比例,成什么比例。
2.学生通过判断两种相关联的量是否成正比例或反比例,加深理解成正比例和反比例关系的特点,体会数形结合和函数思想,提高分析、判断和初步演绎推理能力。
3.学生进一步体会生活中常见的相关联的变换关系,感受比和比例的应用价值,体会不同领域数学内容之间的联系,激发学习数学的积极性。
教学重点:
正确判断两种相关联量的正比例和反比例关系。
教学难点:
有条理地说明判断正、反比例的理由。
教学过程:
一、揭示课题
谈话:上节课我们复习了比和比例的相关知识,这节课我们一起复习正比例和反比例。(板书课题)
通过复习,进一步认识正比例和反比例的意义、正比例图像,了解正、反比例的区别和联系,掌握判断两种量是否成正比例或者反比例的方法,能正确地进行判断。
二、回顾梳理
1.提问:请同学们回忆一下,怎样的两种量是成正比例的量?怎样的两种量是成反比例的量?
根据学生回答板书。
提问:你能举一些生活中成正比例或反比例的例子吗?在小组里相互说一说。
全班交流,让学生举例说一说。
2.做“练习与实践”第7题。
提问:每张表里有哪两种量?每张表里的两种量是成正比例、反比例,还是不成比例?先独立分析每张表的数量变化过程,再把你的想法与同桌交流。
集体交流,引导学生判断并说明理由。
提问:我们是怎样判断两种量成不成比例,成比例的是成正比例还是反比例的?
3.做“练习与实践”第8题。
学生理解题意后独立思考,判断结论。
指名学生说说各题中两种量是否成比例,成比例的是成正比例还是成反比例,并说明理由,结合交流板书相应的关系式。
三、综合练习
1.做“练习与实践”第9题。
(1)学生练习。
出示第9题,让学生说说图中的信息。
要求学生独立思考和完成第(1)~(3)题,再和同桌相互说一说。
(2)学生交流。
①提问:这辆汽车在高速公路上行驶的路程和耗油量成正比例吗?为什么?
让学生判断并说出判断理由。
②让学生说说问题(2)判断的方法。
结合图像说明:可以先在横轴上找到表示75千米在图像上的对应点,再通过图像上的对应点找出和确定耗油升数。
③出示学生根据第(3)题画出的图像。
提问:怎样描出路程和耗油量对应的点画出图像的?
2.做“练习与实践”第10题。
出示表格,让学生说说表中的信息。
(1)出示问题(1),提出要求:
①画一画:根据表中数据描点连线。
②议一议:哪一杯中纯酒精与蒸馏水体积的比和其他几杯不一样?在小组里交流你的想法和理由。
学生独立操作后小组讨论。
集体交流,展示学生画出的图像,说说是怎样画的。
让学生判断结果,并说出理由。
(2)出示问题(2)(3),学生独立解答。
集体交流,让学生说说解答结果及思考方法。
四、课题总结
提问:通过这节课的复习,你有什么收获?还有什么困惑吗?
小学六年级下册数学《数与代数》教案优质范文五教学目标:
1、经历自主回顾和整理“数的认识”的过程。
2、能对学过的数进行较系统的整理,进一步掌握数的知识,发展数感。
3、积极参加自主整理的活动,获得成功的学习体验。
课前预习:
小组合作,交流整理:
回顾以前学过那些数,各举五例。分析不同类数之间有何关系。
教学过程:
一、结合实例,引导学生回忆数的认识
1、回顾数的意义。
师:你学过那些数?
(生回答)
师出示卡片,生齐读。师:举例说明这些数可表示什么?
(生回答)
2、数的分类。
完成问题(1)。
师:把上面的数填到合适的位置
(生回答)
师:每种类型的数,除了上面几种类型,你还能举出其它的吗?
(生回答)
3、数的互化
师出示问题(2)
呈现表格,完成数的互化,交流做法。
4、数的大小比较。
师出示问题(3)
学生自主完成。
5、适时小结。
师:通过刚才的练习,我们复习到数的哪些知识?
(生回答)
二、整理回顾有关倍数和因数的知识
1、引出问题。
师:小明的爸爸年龄数的十位上是最小的合数,个位上的数既不是质数也不是合数,且年龄是小明的五倍,同学们能猜出小明和他爸爸的年龄吗?
(生回答)
以上问题,我们运用了哪些数学知识呢?(倍数和因数)
明确:我们一起回顾和整理倍数和因数。
2、小组合作,梳理知识。
师:以小组为单位,将学过的“倍数和因数”知识整理下来。同学们认真讨论,由组长记录,一会儿我们要比一比,看一看哪一个小组整理的更加完整、科学合理。全班交流。
整理完善知识结构。
师:在这一部分中我们为什么先学因数和倍数?
组织学生讨论和交流
师:倍数和因数是基础,他们是相互依存的关系,今天整理出来的倍数和因数脉络图使这部分知识更加条理化和系统化。
三、复习正数和负数
师出示亮亮家4月份收支情况记录。
学生阅读题目内容。
出示问题(1)。
提醒学生估算时要注意的问题。(生回答)师:(生回答)师:(生回答)
出示问题(2)。
让学生举例说明什么是正数和负数。
学生自主完成问题(2)。
全班交流。
交流时重点关注怎样用正负号表示收支情况,以及怎样基数按每次结余。
四、人民币上的号码
1、让学生拿出自己身上的人民币。
2、提出兔博士的问题,鼓励学生根据自己你的经验大胆回答。
五、课堂小结
这节课我们复习了哪些内容?,你想提醒大家注意哪些问题?
六、课堂作业
第二课时
教学目标
1、经历自主回顾和整理整数、小数、分数四则运算的过程。
2、能对四则运算及它们之间的关系和运算定律进行归纳和整理,能选择合适的估算方法。
3、体验自主整理数学知识的乐趣,提高计算能力。
课前回顾:
我们学过那些计算?分别写出整数、小数、分数的加、减、乘、除的算式各一道,并计算出结果。小组内交流计算的结果。
教学过程:
一、引导学生回顾和整理四则运算
1、师:回想一下我们学过哪些计算?
生回答。
小组长汇报 本组在课前练习中出现的问题。
2、议一议
出示问题(1)生归纳整理。
出示问题(2)生举例说明0和1在四则运算中的一些特殊情况。
生整理汇报。(注意提示0不能做除数)
3、各部分间的关系。
师:加法各部分间有什么关系?
生回答。
引导学生自己总结减法各部分间的关系。
师归纳出加减法互为逆运算。
同样的方法总结乘除法的关系。
说一说
师:上述关系在计算中有哪些应用?
启发学生回答,(进行验算、解方程等)
二、复习四则运算和运算律
1、师:我们学过的运算律有哪些?
小组讨论,自主总结,并写出字母表达式。
2、出示问题(2)
先说出运算顺序再计算。计算后交流做法,注意能简算的要简算。
3、估算。
(1) 出示问题(1)
先让生独立思考并判断,再回答是如何判断的。
(2) 出示问题(2)
师生共同讨论怎样想,需要几个步骤。
计算问题(2)时可用竞赛的方式,看谁算得又对又快。
一、知识与技能:
1、理解比的意义,掌握比的读写法,认识比的各部分名称。
2、理解比值的含义,知道求比值的方法,并能正确地求比值。
3、理解并掌握比与分数、除法的关系。
4、培养学生分析、比较、抽象概括、分析解决问题的能力和应用意识。
二、过程与方法:
1、通过自主学习,合作交流,使学生掌握一定的学习方法。
2、利用多媒体课件沟通数学与生活的联系,培养学生的应用意识。
3、引导学生加强知识间的联系,提高学生分析解决问题的能力。
三、情感态度价值观:
1、有机渗透爱国主义教育。
2、引导学生探索知识间的内在联系,激发学生学习兴趣。
3、通过课件演示,使学生感悟到数学知识内在联系的逻辑之美,增强审美意识。
教学重点和难点
1、教学重点:比与除法、分数的关系
2、教学难点:理解比的意义
教学过程
一、创设情境,引入新课。
师谈话引入新课,出示课题
二、探究新知,掌握知识。
(一)教学比的意义。
1、教学同类量的比。
A、请同学们看大屏幕,(出示课件2),这是谁?
关于杨利伟,你们都知道些什么?
师:你们知道的真多!2003年10月15日,我国成功发射了第一艘载人飞船————“神州”五号,(出示课件3),杨利伟叔叔就是乘坐“神州”五号飞上太空的,实现了我们中华民族几千年的飞天梦想。
(出示课件4)这就是杨利伟叔叔在太空中向人们展示联合国旗和中华人民共和国国旗时的情景。杨叔叔能干吗?
(出示课件5)杨利伟叔叔展示的两面旗都是长15cm,宽10cm,长是宽的几倍?
宽是长的几分之几?怎样用算式表示?
(引导学生说出,教师板书:15÷10
10÷15)
B、师:这两个关系都是用什么方法来求的?(除法)
C、师:比较这两个数量之间的关系,除了除法,还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10(师板书:15比10
)
,宽和长的比是10比15。
(师板书:10比15
)
我们来看一看,长与宽的比,宽与长的比一样吗?为什么?说明什么?
师:两个数量进行比较一定要弄清谁和谁比。谁在前,谁在后,不能颠倒位置,否则比表示的具体意义就变了。比是有顺序的。
D、师:不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。
例如:我们班有男生22人,女生24人,男生和女生人数的比是几比几;女生和男生人数的比呢?
2、教学不同类量的比。
A、师(课件5出示):“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。飞船进入轨道后平均每分钟飞行多少千米?怎样用算式表示?(
生说师板书:42252÷90)
B、师:对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90。(师板书:42252比90)这里的42252千米与90小时是两个不同类的量。不同类的两个量相比可以得到一个新的量,如:路程∶时间
=
速度
总价∶数量
=
单价
3、归纳比的意义。
A、师:刚才的两个例子,都是通过两个数相除来表示两个数量之间的关系,它们都可以用比来表示,所以什么是比?聪明的你能说说吗?(学生试说,教师总结板书:两个数相除又叫做两个数的比。(揭示课题)这就是我们今天学习的比的意义(师板书课题)
B、学生读比的意义。
(二)教学比的读写法和比的各部分名称。
1、师:关于比,我们课本第44页还有很多知识,下面请同学们带着这些问题(出示课件6)自学,并概括相关知识点,看看谁最能干。
1、几比几怎样写、怎样读?
2、比的各部分名称是什么?
3、怎样求比值?
4、比值可以怎样表示?)
2、学生代表汇报,师补充板书。(15∶10
10∶15
42252∶
90)
师质疑:比号和冒号有区别吗?书写时应注意什么?
3、学生代表汇报,教师用(课件7)逐一出示:
“∶”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
15
∶
10
=
15
÷
10=
比值
=
比的前项
÷
比的后项
即时练习
: 3 ∶
2
=
3 ÷ 2
= 或1.5
8 ∶
1
=
8 ÷ 1
=
8
比值通常用分数表示,也可以用小数或整数表示。
大家想一想:比与比值有什么区别吗?
(三)教学比与除法、分数的关系。
1、(出示课件8)小组讨论:
比的前项、后项和比值分别相当于除法算式和分数中的什么?
联
系(相
当
于)
区别
比
比的前项
∶(比号)
比的后项
比值
一种关系
除法
被除数
÷(除号)
除数
商
一种运算
分数
分子
-(分数线)
分母
分数值
一种数
A、小组代表汇报,完成上表。(课件出示)
B、师:如果用字母表示比与除法、分数这三者的内在关系,应该怎样表示?引导板书:
a
∶
b
=
a
÷
b
=
C、根据分数与除法的关系,两个数的比也可以写成分数的形式。
例如:15∶
10,可写成(师板书),仍读作“15比10”。
2、(出示课件9)(b≠0)想一想:比的后项可以是0吗?为什么?(比的后项不能是0。因为在除法算式中,除数不能为0,比的后项相当于除数,所以比的后项也不能为0。因为在分数中,分母不能为0,比的后项相当于分母,所以比的后项也不能为0。)师补充板书
3、师质疑:(出示课件10)可是,在比赛场上,我们常常用比分的形式来表示两个队的比赛结果,这里的比和我们这节课学习的比一样吗?这里的12∶
0是什么意思?谁能说说看。
学生讨论回答后,教师订正时指出(课件出示):各类比赛中记录的比分,只表示某一队与另一队比赛各得的进球分数,不是表示两队所得分数的倍数关系,这与我们今天学习的比的意义不同,它只是借用了我们这节课学习的比的写法。
三、巩固新知,深化提高。
1、(出示课件11)判断对错我能行。
(1)小明身高1米,爸爸身高1.7米,小明与爸爸身高的比是1︰1.7(
)
(2)
既可以读作十五分之七,又可以读作七比十五。
(
)
(3)把1克盐溶于20克水中,盐与盐水重量的比是1︰20。
(
)
(4)比的前项和后项都可以为0。
(
)
2、(出示课件12)完成课本“做一做”的第1、2题。
(1)小敏和小亮在文具店买同样的练习本。小敏买了6本,共花了1.8元。小亮买了8本,共花了2.4元。小敏和小亮买的练习本数之比是(
)︰(
),比值是(
);花的钱数之比是(
)︰(
),比值是(
)。
(2)
3
︰(
)=
24
(
)︰
人教版数学六年级下册第四单元第二课时
课程名称
比例的基本性质
教学目标
了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例。
教学重点
探索并掌握比例的基本性质。
教学难点
判断两个比能否组成比例。
教学方法
讲授法
知识点描述
全面了解比例各部分的名称,并探索、讲解比例的基本性质的核心内容:详细讲授如何应用比例的基本性质来判断两个比能否组成比例。
适用对象[来源:学科网ZXXK]
六年级学生
设计思路
本节课通过观察、猜测、举例验证、归纳等数学活动,让学生经历探究比例的基本性质的过程,渗透有序思考,体验探索中的数学乐趣,培养学生的推理、归纳能力和探索精神,发展学生的思维能力。
教学过程[来源:Zxxk.Com]
内容
导入
一、复习导入
1.什么是比例?
表示两个比相等的式子叫做比例。
2.填空:15:(
)=5:3
预设:根据比例的意义:在比例中,两个的比值相等。
我们知道,5:3=5/3,根据分数的意义,把5/3化成分子为15的分数,得到15/9,利用分数与除法的关系,15/9=15:9,所以,15:(
9
)=5:3。你们做对了吗?同学们真棒!
设计意图:简单的问答,既复习巩固了上节课的知识比例的意义,又为这节课做了铺垫。尤其是第2题,先利用比例的意义求出有一个未知项的比例,为后面的猜一猜做伏笔,能让本节课探索比例的基本性质更顺利的进行。
探究新知
二、认识比例各部分的名称
课件出示比例:2.4
:
1.6
=
60
:
40
师:在2.4:1.6=60:40这个比例中,组成比例的四个数“2.4、1.6、60、40”,叫做比例的项。中间的两项“1.6”和“60”叫做比例的内项。两端的两项“2.4”和“40”叫做比例的外项。
如果把这个比例写成分数的形式:
2.4:1.6=60:402.4/1.6=60/40,1.6和60仍然是内项,2.4和40仍然是外项。
提问:你记住比例各部分的名称了吗?
三、牛刀小试
1.指出下面比例的外项和内项。
4.5:2.7=10:6
1/2:1/3=12:8
师:在比例4.5:2.7=10:6中,2.7和10是它的内项,4.5和6是它的外项;
在比例1/2:1/3=12:8中,1/3和12是它的内项,1/2和8是它的外项。
2.填空。
在3:8=0.6:1.6中,(
)和(
)是内项,(
)和(
)是外项。
师:在3:8=0.6:1.6中,8和0.6是内项,3和1.6是外项。同学们,你们都写对了吗?同学们真聪明!
设计意图:直截了当的介绍比例各部分的名称,先准确的定位教学的起点,引导学生比较两种形式的比例,明确四个项及每个项的位置都相同,只是形式不同而已,因而两个内项和两个外项是不变的。[来源:Z。xx。k.Com]
四、探究比例的基本性质
1.课件出示:猜一猜
24:(
)=(
):1
师:同学们,请你们看看这个比例的外项是什么?
预设:这个比例的外项是24和1。
师:那么,它的内项是多少呢?你们知道吗?它有多少种写法?请同学们在练习本上猜一猜,填一填,写一写。
预设:
假设第一个内项为1,根据比例的意义求出另一个项为24;
假设第一个内项为2,根据比例的意义求出另一个项为12;
假设第一个内项为3,根据比例的意义求出另一个项为8;
假设第一个内项为4,根据比例的意义求出另一个项为6;
......
从这里可以看出,这个比例有无数种填法。
思考:观察上面的内项,你有什么发现?
内项:1×24=24,2×12=24,
3×8=24,
4×6=24。
外项:24×1=24。
猜想:在比例里,两个外项的积等于两个内项的积。
师:是不是所有的比例都有这样的规律呢?
2.验证猜想。
4.5
:
2.7
=
10
:
6
内项:2.7×10=27,
外项:4.5×6=27.
1/2
:
1/3
=
12
:
8
内项:1/3×12=4,
外项:1/2×8=4.
3.归纳比例的基本性质
师:通过举例验证,你得出什么结论?
预设:在比例里,两个外项的积等于两个内项的积。
师:这句话呀,其实就是我们今天学习的内容:比例的基本性质。
大家一起来读一读吧。
在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
4.用字母表示比例的基本性质。
师:如果
a:b=c:d(b、d≠0),
则ad
=
bc.
或
设计意图:设计“猜一猜”,这个问题简单而开放,激发学生的学习兴趣,答案不唯一,为学生的思考打开了空间。让学生经历“计算——猜想——验证——归纳——完善”的知识探究过程,激发学生的探究欲望,让学生用不同的对这个猜想进行验证,抓住关键词“积”。
巩固练习
五、练一练。
应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
6:3和8:5
0.2:2.5和4:50
1/3:1/6和1/2:1/4
1.2:3/4和4/5:5
预设1:6×5=30,3×8=24,30≠24,不能组成比例。
预设2:0.2×50=10,2.5×4=10,能组成比例。[来源:学#科#网]
预设3:1/3×1/4=1/12,1/6×1/2=1/12,能组成比例。
预设4:1.2×5=6,3/4×4/5=3/5,6≠3/5,不能组成比例。
课堂小结
1.利息与本金的比值叫做(
)。
A. 利息 B. 利率 C. 税率
【答案】
B
【考点】百分数的应用--利率
【解析】【解答】解:利息与本金的比值叫做利率。
故答案为:B。
【分析】单位时间内,利息与本金的比值叫做利率。
2.某种商品降价20%出售,也就是对商品打了
(
)折.
A. 二 B. 八 C. 八五
【答案】
B
【考点】百分数的应用--折扣
【解析】【解答】解:1-20%=80%=八折。
故答案为:B。
【分析】以原价为单位“1”,用1减去20%即可求出现价是原价的百分之几,根据百分数确定折扣数即可。
二、填空题(共3题;共3分)
3.爷爷把30000元存入银行定期2年,年利率是2.14%,到期能获得利息________ 元.
【答案】
1284
【考点】百分数的应用--利率
【解析】【解答】解:30000×2.14%×2
=642×2
=1284(元)
故答案为:1284。
【分析】利息=本金×利率×存期,根据公式计算利息即可。
4.李爷爷把5000元钱存入银行,整存整取2年,年利率按2.25%计算。到期时李爷爷可以取回本金和利息一共________元。
【答案】
5225
【考点】百分数的应用--利率
【解析】【解答】解:5000×2.25%×2+5000
=112.5×2+5000
=225+5000
=5225(元)。
故答案为:5225。
【分析】到期时李爷爷可以取回本金和利息的总钱数=本金+利息,其中利息=本金×利率×时间。
5.一部手机打八折后的价格是960元,那这手机原价是________元。
【答案】
1200
【考点】百分数的应用--折扣
【解析】【解答】解:960÷80%=1200(元)
故答案为:1200。
【分析】八折的意思就是现价是原价的80%,根据分数除法的意义,用八折后的价格除以80%即可求出原价。
三、解答题(共5题;共25分)
6.某种自行车每辆原价230元,现在商店按8折出售,这种自行车比原价便宜了多少钱?
【答案】
解:230×(1-80%)
=230×0.2
=46(元)
答:这种自行车比原价便宜了46元。
【考点】百分数的应用--折扣
【解析】【分析】把这种自行车的原价看作单位“1”,便宜了1-80%=20%,原价×20%=
这种自行车比原价便宜的钱数。
7.张叔叔2010年12月28日存入银行8000元钱,定期3年,年利率为3.85%,到期时张叔叔一共可以取回多少钱?
【答案】
解:8000×3.85%×3+8000
=308×3+8000
=924+8000
=8924(元)
答:到期时张叔叔一共可以取回8924元钱。
【考点】百分数的应用--利率
【解析】【分析】到期时张叔叔一共可以取回的钱数=本金+利息,其中利息=本金×利率×时间。
8.请帮刘小徽的妈妈算一下到期能从银行取到利息多少钱?
某某银行定期存单
存入金额(元)
利率
起息日
到期日
100000
2.94%
2019.3.11
2021.3.11
【答案】
解:100000×2.94%×2
=2940×2
=5880(元)
答:妈妈到期能从银行取到利息5880元。
【考点】百分数的应用--利率
【解析】【分析】到期能从银行取到的利息=存入的钱数×年利率×存的年份数,据此代入数据作答即可。
9.为了节约能源,国家鼓励大家购买新能源电动汽车和小排量汽车,特对车辆购置税作如下规定:
①新能源汽车免10%的车辆购置税;
②汽车排量1.6L以上的按汽车成交价格的10%征收;
③汽车排量1.6L及以下的按汽车成交价格的5%征收;
某汽车专卖店规定,购买汽车时如果分期付款需要加价7%,如果用现金一次性付款可享受九折优惠。小明爸爸看中一辆原价
20万元的1.8L排量汽车,准备一次性付款。请你帮小明爸爸算一算:购买这辆汽车一共要花多少万元?
【答案】
解:20×90%+20×90%×10%
=18+1.8
=19.8(万元)
答:购买这辆汽车一共要花19.8万元。
【考点】百分数的应用--折扣,百分数的应用--税率
【解析】【分析】由于是一次性付款,所以可以享受九折优惠,用原价乘90%求出成交价;1.8L超过1.6L,所以按成交价的10%加收购置税,由此用成交价乘10%求出购置税钱;用成交价加上购置税钱数就是一共要花的钱数。
10.乘坐飞机的每位旅客,携带行李超过20千克的部分,每千克要按飞机票原价的1.5%购买行李票。张红从贵阳乘飞机到上海,飞机票打五五折后是770元。贵阳到上海飞机票的原价是多少元?她带了32千克行李,应付行李费多少元?
【答案】
解:770÷55%=1400(元)
1400×(32-20)×1.5%
=1400×12×1.5%
=16800×1.5%
=252(元)
答:贵阳到上海飞机票的原价是1400元,应付行李费252元。
1.存入银行1000元,年利率是3.56%,两年后可得本息共多少元?列式正确的是(
)。
A. 3.56%×2 B. 1000×3.56%×2 C. 1000×3.56%×2+1000 D. 3.56%×2+1000
【答案】
C
【考点】百分数的应用--利率
【解析】【解答】解:两年后可得本息:(1000×3.56%×2+1000)元。
故答案为:C。
【分析】两年后可得本息=两年后的利息+本金=本金×年利率×年数+本金,据此代入数值解答即可。
2.李伟将压岁钱2000元存入银行,存期三年,年利率是2.75%。到期后,银行支付的利息是(
)元。
A. 55 B. 165 C. 2165
【答案】
B
【考点】百分数的应用--利率
【解析】【解答】解:2000×2.75%×3
=55×3
=165(元)
故答案为:B。
【分析】利息=本金×利率×存期,根据公式计算利息即可。
3.某原料供应商对购买其原料的顾客实行如下优惠措施:1、一次购买金额不超过1万元,不予优惠;2、一次购买金额超过1万元,但不超过3万元,给九折优惠;3、一次购买金额超过3万元,其中不超过3万元九折优惠,超过3万元部分八折优惠。某厂因库容原因,第一次在该供应商处购买原料付款7800元,第二次购买付款26100元,如果他一次购买同样数量的原料,可以少付(
)
A. 1460元 B. 1540元 C. 3780元 D. 4360元
【答案】
A
【考点】百分数的应用--折扣
【解析】【解答】解:7800+26100=33900元,26100÷90%=29000元,7800+29000=36800元,30000×90%+6800×80%=27000+5440=32440元,33900-32440=1460元,所以可以少付1460元。
故答案为:A。
【分析】该厂实际付的钱数=第一次购买付的钱数+第二次购买付的钱数,第二次购买没有打折前花的钱数=该厂第二次购买实际花的钱数÷一次购买金额超过1万元,但不超过3万元打的折扣,所以该厂没有享受优惠前一共花的钱数=该厂第一次购买付的钱数+第二次购买没有打折前花的钱数,所以一次购买需要花的钱数=没有超过3万元打折后花的钱数+超过3万元打折后花的钱数,然后与该厂实际付的钱数作差即可。
二、填空题(共2题;共3分)
4.近几年我市快递业务量逐年递增,预计今年将同比增长近两成,“两成”改写成百分数是________%。周叔叔去快递公司应聘,该公司每日基本工资80元,另外每送一件快递再加0.5元。如果周叔每天送n件快递,一天可以拿到工资________元。(1天工资=基本工资+送快递另加的费用)
【答案】
20;0.5n+80
【考点】百分数的应用--成数
【解析】【解答】解:“两成”改写成百分数是20%;周叔叔可以拿工资:0.5n+80(元)。
故答案为:20;0.5n+80。
【分析】第一问:几成就是百分之几十;
第二问:用一件快递再加的钱数乘快递件数表示出送快递另加的费用,再加上基本工资即可表示出一天可以拿到的工资。
5.某商场在“六一”期间益智类玩具打“六六折”促销,也就是把这类商品优惠了________ %。
【答案】
34
【考点】百分数的应用--折扣
【解析】【解答】解:六六折=66%
1-66%=34%,商品优惠了34%。
故答案为:34.
【分析】打“六六折”意思是现价是原价的66%,便宜了原价的34%。
三、解答题(共5题;共30分)
6.王老师要买60个足球,三个店的足球单价都是25元,你认为王老师到哪个店买合算?
【答案】
解:甲店:60÷(10+2)=60÷12=5(组),5×10×25=1250(元);
乙店:60×25×80%=1500×80%=1200(元);
丙店:60×25÷200=1500÷200=7(个)......100(元),60×25-7×30=1500-210=1290(元)。
1290>1250>1200。
答:乙店合算。
【考点】百分数的应用--折扣
【解析】【分析】先根据“要买足球的数量÷(优惠买的数量+优惠送的数量)=买几组优惠的数量,甲店花的钱数=买几组优惠的数量×优惠买的数量×足球的单价”、“乙店花的钱数=要买足球的数量×足球的单价×折扣率”、“要买足球的数量×足球的单价÷购物优惠的价格=满几个购物优惠的价格......剩余的钱数,丙店花的钱数=要买足球的数量×足球的单价-满几个购物优惠的价格×购物优惠的价格”,代入数值分别计算出甲店、乙店、丙店买完足球需要花的钱数,再进行比较,哪个店花的钱少即在那个店买合算。
7.“书籍是人类进步的阶梯”,为了提高学生的阅读量,六一班设置了班级图书角。
(1)图书角里有故事书和科技书共140本,其中故事书的本数是科技书的
,图书角里的故事书和科技书各有多少本?
(2)为了扩充图书种类,李老师准备为班级图书角购买一套原价1000元的图书。这套书在当当网可享受“每满200元减80元”的活动,在淘宝网可享“折上折”,即先打七折再打九折。请你算一算,在哪个网上购书更优惠?
【答案】
(1)解:科技书本数:
140÷(1+)
=140÷
=80(本)
故事书本数:140-80=60(本)
答:图书角里的故事书有60本,科技书有80本。
(2)解:当当网:1000-1000÷200×80
=1000-400
=600(元)
淘宝:1000×70%×90%
=700×90%
=630(元)
答:在当当网上购书更优惠。
【考点】百分数的应用--折扣
【解析】【分析】(1)以科技书本数为单位“1”,故事书和科技书的总数是科技书的(1+),根据分数除法的意义,用故事书和科技书的总数除以占科技书的分率即可求出科技书本数,进而求出故事书本数;
(2)当当网:先确定1000元里面有几个200元,就是减少几个80元,这样计算出总价;淘宝:用原价乘70%,再乘90%即可求出折后价格。比较后确定哪个网上更优惠即可。
8.六一儿童节,爸爸给松松买了一套儿童桌椅,一共用了266元。其中桌子按标价打了七折实际用了210元,椅子按标价打了八折。椅子的原标价是多少元?
【答案】
解:(266-210)÷80%
=56÷80%
=70(元)
答:椅子的原标价是70元。
【考点】百分数的应用--折扣
【解析】【分析】用一套的售价减去一张桌子的售价求出一把椅子的售价,然后用椅子的售价除以80……即可求出原来的标价。
9.邮局汇款的汇费是1%,在外打工的小明爸爸给家里汇钱,一共交了38元的汇费,小明的爸爸一共给家里汇了多少元?
【答案】
解:38÷1%
=28×100
=3800(元)
答:小明的爸爸一共给家里汇了3800元。
【考点】百分数的应用--税率
【解析】【分析】给家里汇的钱数×汇费率=汇费,据此可得:汇费÷汇费率=给家里汇的钱数。
10.某品牌运动服搞促销活动,在A商场打八折销售,在B商场按满100元减20元的方式销售,爸爸要买一件标价520元的这种品牌运动服选择哪个商场更省钱?
【答案】
解:A商场:520×80%=416(元)
B商场:5×20=100(元),
520-100=420(元)
416<420
答:A商场省钱。
【考点】百分数的应用--折扣,最佳方案:最省钱问题
1、知识与技能:指导学生了解书籍封面装帧的知识。
2、过程与方法:启发学生掌握各种装饰方法设计书籍封面。
3、情感、态度、价值观:启蒙学生设计意识,培养学生设计的兴趣。
教学重、难点:
1、教学重点:学生是否了解书籍装帧设计的要点。
2、教学难点:学生是否合理运用多种手段(如绘画、拼贴等)进行书籍封面的设计。
教学准备:
教师准备:范作、相关图片等。
学生准备课本、纸张、剪刀、胶棒、水彩笔、喜爱的课外书一本等。
教学过程:
一、课堂导入
师:孩子们,欢迎大家来到知识的殿堂。
师:有位名人曾经说过:“书,是人类发出的最美妙的声音。”
师:这些书漂不漂亮?通过调查啊,老师发现,同学们最喜爱的课外书虽然各种各样,但它们都有一个共同的特点,那就是书的封面都特别漂亮,看来一本书的外表是非常重要的,书的外表就是指书的封面,同学们想不想亲自动手来设计书的封面呢?那就让我们一起来学习第八课《学做一本书》。(板书)
二、课堂发展
1、封面的构成要素。
师:同学们拿出老师放在你桌面的“导学卡”完成导学卡上面的任务。师生共同总结书的构成:
生:
(1)要先写上题目。(书名)
(2)配上漂亮的图片。(插图)
(3)写上作者名字。
(4)出版社。
(学生可能更多的关注了书的封面,没有考虑到书的封底,这时候老师要及时点出:书的封皮包括封面和封底。)
(5)定价。
(6)条形码。
引导学生观察、思考,师生共同逐步总结:书的封皮包括封面和封底。是由书名、插图、作者、出版社、条形码、价格等元素共同组成。(板书)
2、指导学生继续观察自己的课外书,教师和学生共同参与进来,对每项要素进行讨论。设计每一项要素的时候,我们需要注意什么?
教师根据学生回答——点出,如:书名是对整本书内容的高度概括。所以书名要设计醒目,不仅要大,还要放在主要的位置。封面、封底的设计要和谐统一。插图具有装饰性,可以把书打扮的漂亮,文、图片要相互联系;条形码:相当于书的身份证。
总结:同学们通过自己的细心观察和用心思考,不需要老师教,自己就已经基本掌握了书的封面设计。同学们太棒了,真是让老师刮目相看。
3、加深巩固要点:
同学们掌握了设计封面的本领,老师想请你们做个小游戏,请你找出下面这些图片不合适的地方?
课件展示游戏图片。
特别指出并总结:
①怎样突出表现书名。
②封面插图与封底插图的相互关系。
(通过详细观看与比较,加深学生对封面设计的认识,为下一步设计打下基础)。
三、创作作品
1、今天你也是设计师,想一想、说一说你准备设计一本什么内容的书?如何装饰它?
2、作业要求:
①采用剪贴、绘画、书写相结合。
②充分利用各种材料来装饰。
③作品要求精细、美观。
教师辅导:注意安全,保持卫生,即时辅导,讲解难点。
四、课堂展示
1.
通过观察、交流等活动认识倒数,理解倒数的意义及“互为倒数”的含义。
2.
经历找一个数的倒数的方法,会求一个数的倒数。
3.
在交流的活动中,培养观察、归纳、概括的能力,发展数学思维。
教学重点:
理解倒数的意义,会求一个数的倒数。
教学难点:
理解1、0的倒数,理解“互为倒数”的含义。
教学过程:
一、复习导入
口算下列各题。
设计意图:通过复习积为1的分数乘法,学生利用知识间的迁移,为本节课学习倒数奠定基础。
二、探究新知
1.
认识倒数。
师:观察这些算式,看看有什么规律。
生1:两个数的乘积都是1。
生2:相乘的两个数的分子、分母正好颠倒了位置。
师:乘积是1的两个数互为倒数。和互为倒数,就是指:的倒数是,的倒数是。
师:你能像这样说说其它几组数字吗?
生1:,和互为倒数,的倒数是,的倒数是。
生2:,和互为倒数,的倒数是,的倒数是。
生3:,和互为倒数,的倒数是,的倒数是。
师:非常正确,想一想,互为倒数的两个数有什么特点?
生1:如果两个数都是分数,那么这两个数的分子、分母交换位置。
生2:如果一个是整数,那么另一个分数的分子是1,分母就是该整数。
设计意图:本环节通过计算、观察、交流等活动,归纳出它们的共同规律,引出倒数的定义,在学生发言中进一步理解“互为倒数”的含义,进而引导学生思考互为倒数的两个数的特点。
2.
认识1和0的倒数。
师:下面哪两个数互为倒数?
生1:和互为倒数。
师:为什么呢?
生1:乘积是1的两个数互为倒数,,所以和互为倒数。
师:没错,这就是交换了分子、分母的位置来找倒数的方法。
生2:,所以和互为倒数。
生3:,所以和互为倒数。
师:我们找到了三组互为倒数关系的数,那么1和0有倒数吗?
师:1的倒数是多少?
生1:1×1=1,所以1的倒数还是1。
师:完全正确,1的倒数就是1,也可以说1的倒数是它本身。
师:0的倒数是多少?
生2:0没有倒数。因为0乘任何数都得0,不会等于1,所以0没有倒数。
师:没错,0没有倒数。
设计意图:本环节在找倒数的活动中,初步体验找倒数的方法:调换分子、分母的位置。总结在求倒数时的三种情况:求分数的倒数;求整数的倒数;1和0的倒数问题,使学生理解1的倒数是1,0没有倒数,突破本节课的难点。
三、巩固练习
1.
写出下面各数的倒数。
设计意图:本题巩固求倒数的方法,即交换分子和分母的位置。
2.
先计算出每组算式的结果,再在里填上“>”“<”或“=”。
设计意图:本题通过几组乘、除法算式的对比,让学生初步感知除以一个数等于乘这个数的倒数,为后面学习分数除法奠定基础。
3.
下面的说法对不对?为什么?
设计意图:本题巩固倒数的意义,其中第(2)使学生明白倒数是两个数之间的关系,而不是一个数或多个数之间的关系。
4.
小红和小亮谁说得对?
设计意图:本题是对倒数意义的进一步认识,使学生认识到只要两个数的乘积是1,那么这两个数就互为倒数,与这两个数是整数、分数还是小数无关。
单位:
教学内容:
人教版小学数学教材六年级上册第62-64页。
学情分析:
六年级的学生具备一定的逻辑思维能力与成像能力,他们已经掌握了周长的意义及圆的特征。课前调查中发现:大部分的学生已经知道圆周长的计算公式。但是能正确理解圆周率意义的却只是少数,即使在某些老师上完此课,学生能准确说出圆周率意义和特征的学生只有一半左右。也就是说,学生对圆的周长公式的理解只停留在表面上。
教学目标:
1.知识与技能:直观认识圆的周长,知道圆的周长的含义;理解圆周率的意义,理解和掌握求圆的周长的计算公式。
2.过程与方法:通过观察、推理、分析、综合、抽象、概括等数学活动,经历探索圆的周长与直径的关系的过程,渗透极限的思想;培养学生动手操作能力、合作能力与创新精神。
3.情感态度和价值观:通过揭示圆周率的意义及介绍古人对圆周率的研究史料,激发学生的科学探究的热情,增强民族自豪感。
教学重点:
圆的周长计算公式的推导,能利用公式正确计算圆的周长。
教学难点:
验证圆的周长和直径的关系。(本课的关键就是理解圆周率的意义)
教学过程:
一、预习导航
1.交流发现
师:孩子们,这节课我们一起来学习圆的周长。(板书课题)
师:通过课前的预习,大家对这节课的学习内容都有所认识,请大家先拿出课前小研究先看一看,下面我们以小组为单位进行组内交流,请看活动要求。(出示)
活动要求:
(1)在组内先核对一下课前小研究第1、2题的答案
(2)在小组内互相说说你知道了什么?
(3)在组内挑选一张最好的作品进行小组汇报。
(学生组内交流)
2.小组汇报
师:下面我们进行小组汇报,哪个小组来说说你们小组预习《圆的周长》这一课的学习收获。(思维导图板书:圆的周长)
(小组汇报,教师随机利用思维导图进行板书)
问:还有其他收获吗?
师小结:你们小组的收获真不少,知道了圆的周长的定义(板书:定义)还知道了算圆的周长的方法。(板书:方法)圆的周长的计算公式c=πd或c=2πr。(板书:c=πd)
3.适时点拔
教师结合思维导图进行追问:
(1)出示圆和长方形的图形,问:圆的周长和长方形的周长有什么不同的地方?(板书:曲线)
(2)学生演示绕绳法
师:我们给这种方法起个名,叫绕绳法(板书:绕绳法)
问:用绕绳法进行测量时要注意什么?
(3)课件演示滚动法
师:这种方法叫滚动法。(板书:滚动法)在测量时要注意标出起点。
问:这两种方法都有什么共同的地方?
教师小结:无论是绕绳还是滚圆它们的最终目的都是把圆的周长这条曲线变成了直线段,我们都把它概括为“化曲为直”。
4.聚焦问题
师:在预习中你们还有什么不懂的问题。(学生汇报,教师板书)
预设问题:
问题1:圆的周长是它的直径的几倍?
问题2:圆周率是怎么来的?
问题3:为什么圆的周长c=πd?
(设计意图:复习课中,我们不仅要针对知识的重点、学习的难点、学生的弱点进行整理和复习,更要这是复习课的重要任务之一。为了发挥学生学习的自主性和积极性,提高自学的效率,课前向学生提供了一份《课前小研究》作为预习导航,以思维导图的形式让学生小结课前收获,使学生将所学的知识进行归纳、整理,构建完整的知识网络,打破以往线性教学中一问一答的局面,让学生清晰、高效地自学这部分内容。然后通过学生的展示,使学生深切地体会到“化曲为直”的数学思想方法,从而突出重点,突破难点。最后通过问题的聚焦,为下面的导学反馈指明了方向。)
二、导学反馈
(一)问题1:圆的周长是它的直径的几倍?
1.测量圆的周长
师:圆的周长到底是它的直径的几倍?下面我们进行小组合作学习,一起动手量一量圆的直径和周长的长度,再算一算圆的周长除以直径大约等于几倍,并观察所得数所,看看有什么发现?请看活动要求:(课件出示活动要求)
要求:
(1)利用工具测量手中圆的周长和它直径的长度,并算出周长和它的直径的比值。(结果保留两位小数);
(2)完成任务的小组把结果填入学习记录单中。
(3)观察表中的数据,你们发现了什么?
组别
测量对象
硬币
小齿轮
1号
圆片
2号
圆片
瓶盖
光盘
第
(
)
小
组
周长C
(cm)
直径d
(cm)
C÷d的商
(保留两位小数)
我们的发现:
圆的周长除以它的直径的商大约是(
)倍
2.小组汇报
(1)小组汇报测量结果。
(2)观察数据,得出结论。
师:刚才汇报的两个小组的同学都不约而同地发现圆的周长除以它的直径的商都是3倍多一些。从左往右观察圆的周长、直径这两组数据是怎样变化的?它们的商都是多少?组内说说你有什么发现?
结论1:圆的直径变,周长也变,并且直径越短周长越短;直径越长,周长越长,但有一个数是固定不变的。
结论2:圆的周长总是它的直径的3倍多一些。(出示板书,齐读)
师小结:圆的周长会随着圆的直径的变化而变化,但圆不论大小,它的周长总是直径的3倍多一些,是一个固定不变的数,我们把它叫做圆周率。
(设计意图:本环节为学生提供已标有直径的一元硬币、小齿轮、1号、2号圆片、瓶盖和光盘等学生身边常见的物品作为实验物品,不仅能提高实验的速度,而且也能减少实验误差。引导学生分工合作,用自己喜欢的方法测量出圆的周长和直径,求出比值,并对学生实验的方法进行深入细致的指导,让学生边动手操作边进行信息的收集和分析处理,最后组织学生观察、分析、思考,引导学生发现“圆的周长都是直径的3倍多一些”这一结论,使学生真正理解消化了教学难点。学生在探索新知的过程中,由知识的接受者转变为知识的发现者和创造者,不仅理解掌握了知识,促进了学生的学习方法的养成,还学会了与人合作,培养了合作意识,并且感受到了成功的喜悦,体验了学习数学的乐趣。)
(二)问题2:圆周率到底等于几?
1.介绍圆周率
师:历史上,有不少的数学家都对圆周率作出过研究,想不想了解它背后的故事?让我们一起走进历史,来了解数学家们研究圆周率的历程。
(课件演示)
教师:看完了介绍,现在你们对圆周率有什么想法?
预设:
学生1:我认为圆周率太神奇了,竟然能算到12411亿位还没有算完!
学生2:我认为还有一个神奇的地方,圆周率算到第12411亿位,竟然没有一个循环节!
师:圆周率是一个无限不循环小数,用字母π表示,(板书:π)认识了圆周率,我们再回头来看看刚才实验得出的结论(课件出示:圆的周长总是它的直径的3倍多一些),这3倍多一些指的就是π,所以这句话还可以说成圆的周长总是它的直径的π倍。(课件替换π)如果用字母C表示圆的周长,d表示圆的直径,那么c/d=π(板书:c/d=)
为了计算方便,在实际应用中我们一般只取它的近似值,π≈3.14。
(设计意图:向学生介绍了人类探索圆周率的历程,拓宽了他们的数学视野,让学生感受到数学文明的发展,体验到人类不断探索的脚步。而对祖冲之详细的介绍,使学生了解到祖冲之令人神往的成就,感受到身为一个中国人的骄傲和自豪,同时对学生的后续学习也起到了一定的激励作用。)
2.引导学生发现误差,从而发现测量方法的局限性。
师:回到我们的实验数据,为什么我们实验的结果大部分都得不到3.14呢?
预设:
学生1:我认为测量圆的周长的时候,绳子是松的,而绳子伸直时是撑紧的,绳子有拉力。
学生2:我认为圆在滚动时,圆有可能在原地打转,测量有误差。
教师:很好,与测量工具有关。测量时,误差是不可避免的。用测量的方法来研究圆的周长与直径的关系是不准确的。
(设计意图:选取了相同的圆形物品让学生进行测量,再引导学生进行观察对比,发现同样的物品,测量出来的长度是不同的,知道误差是存在的,如何减少误差,提高测量计算的准确性。)
(三)问题3:为什么圆的周长c=πd?
师:数学家们千方百计地计算出这个圆周率,利用这个c/d=π这个式子,如果知道圆直径,那么可以计算圆的周长c=πd,如果告诉你半径,又怎么求圆的周长?
(设计意图:当学生发现了已知直径求圆周长的方法后,让学生思考还可以已知什么条件来求圆周长,这样通过学生自己总结得出的结论印象更深刻。)
(四)反馈练习
师:要求圆的周长,需要知道什么条件?
1.课件出示相应的练习
(学生完成相应的练习)
师小结:我们知道要算出圆的周长可以有几种方法,对比三种方法,哪种方法更简单?
2.教师出示教材第64页例1。
课件分步出示例1,学生独立完成后讲评。
3.课堂小测
(见附件)
(设计意图:为了巩固所学的知识,体现练习题有梯度、有层次性、有趣味性,设计了层次分明的练习,从计算直观的图形的周长到解决实际问题,让学生学以致用,体会到数学知识在生活中的运用价值,进一步激发数学学习的兴趣和爱好,尤其是小测中的最后一题,让学生选一道自己最想交流的题目与小伙伴们分享,让学生充分巩固所学知识,可以为小伙伴提供一些合理的建议。)
三、归纳积累
1、通过本节课的学习,你有哪些收获,把它补充在思维导图上。
2、学生在思维导图上写收获。
3、全班交流学习收获。
(设计意图:通过小结,让学生们沉静下来回顾本节课学习过程,思考自己本节课的感受和收获,让思维导图梳的形式梳理本节课所学习知识,能更好的沟通知识间的联系,使零散分布的知识连成线,结成网,方便学生理解和记忆。)
四、布置作业
1、完成课本第65页第1、2、3、4题
2、预习第65页和第66页,把不懂的问题在课本上标注出来。
(设计意图:设计一定量的作业让学生完成,让学生更好的巩固本课所学知识,提高学生运用知识解决问题的能力,预习的设计,让学生明晰下节课的教学内容,能带着问题走进课堂,培养学生发现问题的能力,提高学习效果。)
《圆的周长》教学反思
新课程强调学生自主、合作、探究学习方式的培养,让学生在情感体验、知识技能、数学思考、解决问题各方面得到均衡发展。本课的教学就是在新课程理念的指导下,通过教学情境的创设和学生实践活动的开展,积极践行自主、合作、探究学习方式,使学生的主体性和教师的主导性都得以有效的发挥,使教学内容更加厚实、教学活动更加丰富,教学环节清晰,教学效果得到有效的提高。
1、真正体现学生的主体地位,教师是一个组织者、引导者与合作者
在教学测量圆的周长这一内容时,我设计了一个个让学生充分探究的情节,小组合作,根据已有的材料,用不同的方法测量圆的周长,探索规律,让学生充分展示他们的思维过程,把静态的知识结论转化为动态的探索对象,让学生在探索未知领域的同时实现自己的智力发展,教师只是作为学生学习过程的陪伴者,给予适当的点拔和引导,把学习的主动权交还给学生。
2、让学生带着问题去学习,亲历知识获取的过程
我国著名教育家顾明远说过“不会提问的学生不是好学生”,“学问就是要学会问”。《国家数学课程标准》也明确指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式,数学学习活动应当是一个生动活泼、主动探索和富有个性的过程。”也就是说,学生学习数学并非单纯的依赖模仿和记忆,数学学习过程的实质是学生主体富有思考性的探索过程。所以,数学知识的探索轨迹,应作为学生是否主动参与的标志,展现于课堂教学的全过程。在教学中,让学生围绕着问题“圆的周长计算公式为什么是C=πd?圆的周长是它的直径的几倍?”通过学生亲自动手的测量、计算、自学、推导、论证等充分的实践活动而展开的。特别是在测量周长与计算周长与直径的比值这一环节中,我采用了小组合作学习,让学生用不同的方法,如绕绳法、滚动法和折叠法测量不同的圆形物品的周长,小组同学有的测量,有的记录,有的用计算器计算,让学生在具体实验中,体会到“圆的周长总是直径的三倍多一点”这一结论,并知道圆周率的相关知识,进一步推导出c=πd,c=2πr。动手操作,合作探究加深了学生对所学知识的理解,达到突破难点的效果,体现了课堂教学的有效性,学生的合作能力、思维能力、特别是创新能力和实践能力也可以得到发展。可以说,每个知识点的发现,都是学生自主探索的成果,而不是学生被动接受的结论。探索,作为学生学习数学的重要方式,体现了学习中求发展,在发展中求创造的教育思想。
3、数学阅读让学生感受数学的厚实的文化
在数学学习过程中,适当介绍一些有关数学发现与数学史的认识,能够丰富学生对数学发展的整体认识,对后续学习起到一定的激励作用。结合本节课的教学内容,教师向学生介绍了圆周率的有关认识。这里的介绍从《周髀算经》中的“周三径一”、祖冲之的“算筹”到圆周率在现代生活中的应用以及用电子计算机来计算圆周率。通过对“圆周率”发展历史的介绍,来开拓学生的视野,丰富学生的知识面,使学生了解知识的来龙去脉,使学生对圆周率的历史有一个完整的认识,感受到我们祖先的智慧,体会数学知识与人类生活经验和实际需要的密切关系。
4、课堂检测,提高学生做题的积极性
如果一节课都是练习,学生容易疲劳,如果把练习题设计成测试题,有利于提高学生做题的积极性。本节课围绕教学目标设计了一份小测题,用卷子的形式呈现给学生,由学生独立完成。做完后,在课堂上进行小组核对答案,对测试中出现的共性问题,采取相应的补救措施。尤其是小测中的最后一题,让学生选一道自己最想交流的题目与小伙伴们分享,让学生充分巩固所学知识,可以为小伙伴提供一些合理的建议,体验到学习的乐趣。
课前小研究
姓名____________
班别____________
学号______________
组别____________
一、认真阅读课本第62~64页,完成下面的练习。
1.
用红色笔描出下面圆的周长,并说说什么圆的周长。
2.认真观察下图,结合学习长方形、正方形周长的经验,猜想:圆的周长可能和____________有关,为什么?
o
o
o
o
二、完成下面的思维导图。
课堂小测
姓名____________
班别____________
学号______________
组别____________
一、求下面各圆的周长。
二、解决问题