绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇机械传动论文范文,希望它们能为您的写作提供参考和启发。
在煤矿产业中,传动齿轮应用非常广泛,是煤矿机械的一个重要组成部分,但是煤矿的运输重量一般都很大,在施工过程中,很容易导致超重现象,长时间高强度的工作就会导致传动齿轮出现问题,导致机器瘫痪,影响煤矿的施工作业,降低生产效率,甚至造成安全隐患。
1传动齿轮的工作环境及工作特点
煤矿的生产作业一般都是在矿井中进行的,传动齿轮的工作环境大多都是在地下进行生产作业,井下的环境比较复杂恶劣,所以传动齿轮要适应井下复杂的结构情况,因此相对而言传动结构也复杂一点。由于煤矿是重型产业,要求传动齿轮具有比较高的承载能力和性能,矿井一般空间不是很大,所以传动齿轮还要满足体积小,抗冲击能力强等特点,传动要求高效率,尽量减少过程中能量的损失。
2传动齿轮失效的表现形式
2.1传动齿轮磨损失效
磨损的程度分为很多种,一般分为:正常的磨损、中度磨损、破坏性磨损、磨料性磨损以及腐蚀性磨损等。一般性的磨损不会对齿轮的传动造成重大的影响,比如正常的磨损,这是齿轮传动过程中必然存在的,在齿轮的使用寿命中,不会造成齿轮失效,这个磨损是经过时间慢慢磨损的,不影响齿轮的正常转动;对于中度磨损,这个要比正常的磨损速度快一点,在齿轮传动工作的过程中,可能会发出噪音,由于磨损的程度比较大,损失机械能,会降低齿轮工作的效率;破坏性磨损,这个磨损的程度就很大了,齿轮表面会形成严重的损伤,严重影响传动齿轮工作的效率,破坏了齿轮的结构,大大缩短齿轮的使用寿命;磨料性磨损是指在齿轮中间进入了一些颗粒,增大了齿轮间的摩擦系数,摩擦力增大,加速了齿轮的磨损,可能会出现齿轮停止转动的现象;腐蚀性磨损就是在齿轮转动的过程中与周围的化学物质发生的反应,发生了齿轮表面的腐蚀,严重影响齿轮的工作效率。
2.2传动齿轮疲劳失效
在加工过程中,齿轮的表面肯定存在初始裂纹,加之传动齿轮工作的过程中应力的反复作用下,造成材料的疲劳,当作用的应力超出了材料的疲劳极限时,裂纹就会延伸扩张,加速齿轮的损坏,出现齿轮失效。
2.3传动齿轮胶合失效
齿轮的转动需要油的帮助,在强重力作用下,齿轮间的油不能及时的补充,造成两个齿轮接触面的油膜挤破,两个金属齿轮直接接触在一起,在高速运转的情况下,温度上升,可能造成齿轮的胶合,出现失效。
2.4传动齿轮断裂失效
齿轮的断裂意味着彻底不能工作,断裂分为疲劳断裂,高负荷断裂以及淬性断裂等。疲劳断裂就是齿轮在弯曲应力的反复作用下,出现裂痕,当应力超出了齿轮的疲劳极限时,裂痕继续扩张,导致断裂;高负荷断裂是指在高强度的作业状态下,负荷已经超出了齿轮的额定负荷导致的破坏性断裂,或者由于腐蚀使得齿轮部分点出现点蚀,导致断裂等;淬性断裂是指传动齿轮经过热处理时产生了过大的内应力,产生裂纹,外界的压应力与弯曲应力的作用下,产生疲劳,当超过它的疲劳极限时就会促使裂纹延伸,导致淬性断裂,这种断裂的特点就是初始断裂的部位颜色会有点深,这是氧化的结果。
3传动齿轮出现失效的具体原因
设计阶段:由于齿轮工作环境的特殊性,决定了煤矿机械齿轮设计的特殊性,在设计阶段,可能忽视了传动齿轮在矿井工作的特殊性,按照传统的设计来设计煤矿机械传动齿轮,造成传动齿轮不能满足矿井下高强度,环境复杂的要求,达不到韧度、抗冲击和耐疲劳的要求,这是导致传动齿轮失效的自身原因之一。齿轮的制造加工阶段:即使齿轮的设计没有问题,若在制造加工方面不合格,齿轮一样会失效,如果质量把控不严格,锻造时化学成分超标或者化学成分有残留,降低了齿轮的性能,不能满足工作的需要。例如:在加工过程中C的含量超标,就会增加齿轮的脆性,容易发生断裂,造成失效。齿轮的安装使用阶段:不正确的安装方式同样会导致传动齿轮的失效,安装的位置出现偏差,影响整个传动齿轮的安全,同时,传动齿轮的工作需要油的不断补充,一旦缺少油就会增大摩擦力,降低齿轮工作的效率,增加磨损,导致传动齿轮的失效。
4避免传动齿轮失效的有效措施
根据上述传动齿轮出现时效的形式和失效的原因,制定防止传动齿轮失效的有效措施,避免失效问题的出现。
4.1齿轮设计阶段控制
设计阶段要充分的对煤矿齿轮的工作环境进行研究考察,只有充分了解齿轮的工作环境和工作性能的需要,才能对齿轮提出合理化的设计。根据煤矿齿轮工作的特殊性,优化齿轮的设计方案,满足齿轮抗冲击力、耐疲劳性以及承载力的要求,进行精确的计算,在符合国家标准的前提下,选择适合煤矿特殊工作的材料,尤其是钢材的选用尤为重要,这直接影响着齿轮的强度,最好经过研究确定选材,确定油等,以免后期工作出现漏洞。
4.2齿轮工艺制造阶段控制
选材好工艺也好才能保证传动齿轮的质量,要严格控制齿轮制造过程中的质量,改善制造工艺,提高工艺质量。传动齿轮的表面不能过于光滑,研究表明,表面略微粗糙的齿轮要比表面光滑的齿轮使用寿命更长,这个粗糙度应该根据实验来确定,合理的控制粗糙度,将齿轮的性能提升到最佳状态。
4.3齿轮安装阶段控制
齿轮的安装看起来很简单,其实有比较高的要求,对于传动齿轮的平衡度、垂直度都是有要求的,而且这个标准还很严格,稍微有一点偏差就会影响整体的性能,所以,在安装阶段应该有专业人士来进行指导,运用专业的工具辅助安装,最大限度的减少齿轮间的摩擦,降低损耗,提高工作效率,延长使用寿命。
4.4齿轮使用及维护阶段控制
在传动齿轮的使用过程中,应尽量不要超过传动齿轮的额定负荷量,油也要及时补充,保证传动齿轮是在油的辅助下工作,此外,油不能掺入杂质,保持纯净,杂质进入齿轮间会增大摩擦系数,影响齿轮的正常工作。设备的使用过程中应该定期维护保养,并检查传动齿轮,及时发现问题并处理问题,对于可能发生的问题做到及早预防,防患于未然,防止出现传动齿轮的失效问题。
5结束语
煤矿产业是我国比较重要的一部分,煤矿的产量决定于煤矿机械的工作效率,影响着经济的发展,传动齿轮在煤矿机械中发挥着重要的作用,保证传动齿轮的正常工作是保证煤矿机械正常工作的重要前提,传动齿轮失效是齿轮常见的问题,我们必须对其进行研究,找到避免失效的有效措施,每个阶段严格把关,将失效概率降到最低,提高生产效率。
参考文献
[1]张玉玉.分析煤矿机械传动齿轮失效形式[J].黑龙江科技信息,2015,23:80.
[2]刘颖.煤矿机械传动齿轮失效形式分析及改进措施[J].煤炭技术,2013,1:38-39.
关键词: 齿轮减速器;机械传动;降噪问题;措施
Key words: gear reducer;mechanical transmission;noise reduction;measure
中图分类号:TH132.41 文献标识码:A 文章编号:1006-4311(2013)29-0058-02
0 引言
在工业机械设计中,齿轮传动是齿轮减速器最主要的部分,也是系统功率传递的主要形式,因此齿轮作为机械传动的主要角色,在整个机械系统中发挥着举足轻重的作用,但是以往的对于齿轮传动性能的评价只注重于传动效率、平稳性、可靠性等方面,忽略了齿轮传动噪音的问题。随着人们对于机械设备性能品质要求的提高,对工作环境也有了很高的要求,从而使得减速器齿轮传动噪音问题凸显了出来,成为了机械传动中急需解决的问题。
1 齿轮传动中噪音产生机理
1.1 系统传动误差 在齿轮传动中,一个整体机械系统其组成往往较为复杂,完整的齿轮箱作为复杂的传动系统,在力的各种形式转化过程中,会产生高达几十种的固有频率,因此振动形式各式各样。在物理学中我们知道,声音是由振动产生的,任何系统传动都会产生振动。在系统传动中,振动是由系统误差引起的,系统误差是导致振动的主要原因。
1.2 齿轮传动误差 齿轮传动中噪音主要产生原因是渐开线误差或者齿轮间相邻齿距误差而造成的。而齿轮传动中振动幅度和振动频率是齿轮噪音大小的主要衡量因素,在噪音研究中有着重要的意义。但是在实际研究中齿轮系统机械响应是非常复杂的,因此可以通过调整激励来改变系统固有频率。总而言之,齿轮传动误差是作用在齿轮和整个系统的扰动因素并使之产生响应,从而产生噪音通过空气向外传播。
2 齿轮减速器在机械传动中噪音成因分析
2.1 参数因素 ①齿轮精度。齿轮精度是其设计和加工品质重要衡量标准,高精度的齿轮在机械传动过程中平稳运转,产生较少的噪音。但是在实际轮齿设计和加工中,出于经济性原因,为了降低成本,设计者往往在满足基本强度要求下最大限度选用低精度齿轮等级,因此忽略了精度等级,低精度成为齿轮产生噪声与侧隙的主要因素,造成噪音增大。②齿轮宽度。在齿轮传动允许的设计范围内,尽可能的增大从动齿轮齿宽,这样可以增大接触面积,不但能够提高齿轮受载能力,还可以提高轮齿传动的平稳性,减少振动,达到降噪声目的。③齿距和压力角。在适当的范围内减小齿距能够增加轮齿啮合数量,增加轮齿重合度,从而降低啮合齿轮挠度,提高传动效率,减少噪音的产生。此外,较小的压力角可以使得齿轮接触角和横向重合度都增大,使得传动平稳,降低噪音、提高传动精度。
2.2 精度因素 ①啮合平稳性精度。齿轮的工作平稳性精度是指在齿轮传动中对于齿轮瞬时速比的变化要求。在齿轮转动一周时会多次出现的转角误差,在轮齿啮合过程中瞬时传动比的变化会使得齿轮产生多次撞击形成振动,这样使齿轮在传动过程中产生噪音[1]。②齿轮接触精度。齿轮接触斑点大小是评价齿轮接触精度好坏的主要指标,接触斑点过小势必会造成齿轮传动噪声增大。齿轮接触精度低是由于齿向误差影响了轮齿横向接触面积,而轮齿基节偏差和齿形误差都会对轮齿横向接触面积产生影响。③齿轮运动精度。齿轮的运动精度主要表征了运动传递的准确性,即齿轮在啮合一个周期后转角误差最大限值。齿轮齿圈径向跳动在齿轮旋转一周内的齿间累计误差会产生低频噪音,尤其当齿间累计误差逐渐增大时,会在齿轮啮合时造成冲击,从而导致角速度的变化,使得噪音显著增大。
2.3 装配因素 ①齿轮轴向装配间隙过小。如果齿轮在装配前没有将其毛刺及时清除,将会导致齿轮端面与前后端盖之间的滑动接合面在啮合过程中造成接合面的损坏,使得齿轮运动精度降低,产生噪音。②杂物影响。齿轮箱由于杂物进入,造成轮齿间磨损加剧,齿轮在转动过程中平稳度降低,不但降低齿轮传动效率,还会使得噪音增大。
3 齿轮减速器在机械传动中的降噪措施
3.1 齿轮的参数合理优化 ①适当增大主动齿轮的螺旋角。因为当螺旋角增大时,齿轮重合度也会随之加大,这样会使得噪音大大降低。然后,当螺旋角过大时,会导致齿轮加工和安装可操作性变差,对安装精度要求很高,如果达不到精度,就会使实际的重合度变小,其降噪效果反而比螺旋角较小时要差,因此要选择合适的螺旋角。②增加从动齿轮齿面宽。齿宽适当增加会使得轮齿啮合度提高,从而使轮齿传动平稳性增强。所以齿轮的齿宽越大其平稳性越好,降噪效果越好。③提高齿轮精度。齿轮精度的提高,将大大提高轮齿表面粗糙度,从而提高齿轮的运动精度,有效的降低噪音。
3.2 合理选择齿面硬度、齿轮侧隙 通过实验可以得出结论:通常模数齿轮侧隙小于0.04mm时,噪声较低。所以在设计允许的范围内适当减小齿轮侧隙就可以降低噪音。此外,在相同材料和精度的情况下,软齿面比硬齿面噪声要小1.5-6dB,采用主动齿轮硬度比从动齿轮硬度高2-3HBC时取C,可有效降低噪声。
3.3 对齿面进行特殊处理 在齿轮强度设计所允许的情况下,齿轮加工可以选用高阻尼铸铁或某些非金属材料,也可以通过给齿面进行涂镀非金属材料来进行处理。因为选用具有良好塑性和韧性的材料可以减少齿轮啮合冲力与节线撞击,通过减少振动与撞击的方法,就可以有效降噪。
3.4 改善齿轮条件 齿轮的要根据齿轮的圆周速度来选择适当的方式与油,这样就可以有效的降低噪音。因此根据减速器的不同以及工作条件的差异来选择合适的方式与剂。此外,对于在高温环境下工作的减速器,仅通过油池将达不到润和要求,因此要结合循环油等方式进行。
3.5 合理设计减速箱箱体结构 在减速器齿轮箱箱体设计过程中,合理的箱体结构可以增加齿轮传动箱的密封性,使其具有良好的降噪效果。因此齿轮设计时尽可能采用闭式结构,同时箱体结合处要安装减振装置,同时将减速器安装在固定的座体或支撑上,采用这些方法都能够有效降低噪声。此外,在对减速器噪音要求较高的情况下,可以在箱体表面设置阻尼材料层,如泡沫塑料等来降低减速器噪音的产生。
4 结束语
本文通过研究齿轮传动噪音产生机理,分析了减速器齿轮传动过程中噪声的产生原因,提出了相应的降噪方法。但是随着人们生活水平的提高,对噪声控制要求的不断提升,对减速器降噪的研究需要进一步加深,以便找到更有效的减速器降噪方法。
参考文献:
一、引言
近些年来,随着社会经济建设规模的不断扩大,机械在社会生产领域的应用力度越来越大,以机械代替传统的人工生产,在生产效率方面显现较强优势。机械系统有原动力系统、传动系统和执行系统三大部分组成。各个部分在机械系统中发挥着不同的作用。机械的动力由动力系统提供;机械执行系统的结构比较复杂,并具有功能多样性;传动系统是联系这两个系统的桥梁。如果机械系统没有传动系统,那么机械系统也就无法运转。所以,不管是在任何时期,不管是机械技术如何的发展,都离不开机械传动系统。本文就机械传动技术发展现状进行了探讨和分析,并对其未来的发展趋势进行了展望,以期通过本论文的浅谈,能够给机械传统技术研究者提供一定的参考。
二、机械传动技术的雏形
早在我国春秋时代,先人们就已经开始研究机械。桔槔就是先人们充分利用缸盖原理设计制造的简单的机械,这是我国机械的雏形。该种机械可谓是我国机械的鼻祖,对未来我国机械技术的发展有着历史性的影响。先人们所制造的桔槔采用的是缸盖原理。缸盖原理就涉及到传动系统。与其说桔槔是机械技术的雏形,不如说是人类智慧的结晶。随着历史车轮的滚滚向前,我们的先人们又发明了指南车,该种车是利用齿轮传动系统和离合装置开控制和指示车的方向。不过对于指南车的具体叙述在现有历史文献资料上没有详尽的记载。但这也从某种意义上表明了该种车确实存在和使用过,是人类机械技术发展的重要标志。到了西汉,人类发明了齿轮,通过齿轮传动完成某个简单动作。放眼于国外,许多文献资料上都能找到有关机械的记载。从罗马国的谷物碾磨机到法国的谷物磨中率先采用了斜齿轮传动,都见证了传动技术的发展历史。不过需要提出的是,该时期的齿轮的材质是石头,耐久性不是很好。这和当时的社会生产力和科技水平有着必然的联系。从上述我们可以得知不管是我国还是外国从古代就开始研究机械传动技术。到了十四世纪,欧洲所发明的钟表中使用了齿轮系统。基于时钟对工艺要求比较严格,相应地对传动齿轮的精密度要求也比较高,如果采用原始的石材作为齿轮制作原料。那么时钟的准确性将很难得到保障。这个时期,欧洲人使用金属作为齿轮的材质,极大地提高了时钟走时的准确性。不过,我们需要注意的问题是,在第一次工业革命爆发之前,机械和齿轮只是一种概念,尤其是机械传动技术并没有进行深入发展。机械传动技术真正意义的发展是在第一次工业革命爆发后;该时期世界上的一些国家都加大了对机械传动技术的研究力度。蒸汽机是将蒸汽的能量转换为机械功的往复式动力机械。蒸汽机的出现曾引起了18世纪的工业革命的全面爆发。第一台蒸汽机器是一个名叫纽克曼的苏格兰铁匠发明制造的,这在当时是最先进的蒸汽机了。直到20世纪初,它仍然是世界上最重要的原动机,后来才逐渐让位于内燃机和汽轮机等。
三、现代机械传动技术的发展现状
随着社会经济的发展,机械传动技术得到了广阔的发展空间。十九世纪末,内燃机和电动机在社会领域中得以广泛的应用,相应地对机械传动技术提出了更高要求。到了二十世纪,随着科学技术的发展,传动技术更是取得了巨大进步,一些构造比较复杂的齿轮在这个时期已经出现,比如直齿轮、斜齿轮、锥齿轮及蜗杆传动。这些齿轮在机械中的应用推动了工业的发展,使工业逐渐向机械化和精密化迈进。二十世纪五十年代,出现了齿轮几何学,并逐渐发展成为一门独立学科,该学科知识在高速重载汽轮发电机传动系统中涉及的比较多。自进入二十一世纪,机械传动技术已经相当成熟,齿轮作为传动系统的重要载体,在社会多领域中都有涉足。比如齿轮在航空航天领域的应用。基于航天领域特殊性,相应地对传动系统的要求也比较高,这就促使传动系统的发展也被推向了新的高度。就我国机械传动技术发展总体情况而言,同国外发达国家技术水平相比,还存在一定的差距,这是我国机械领域需要重点研究的技术课题。
四、机械传动技术未来发展趋势
随着社会生产力的不断提高,人们对机械传动技术势必会提出更高要求,以满足社会生产需求。当今时代是信息爆炸时代,计算机技术、微电子技术、通信技术这些先进成熟技术在当今机械传动系统中的融合力度越来越大。这也必将推进机械传动技术向智能化、信息化方向发展。在这样多种技术共存的年代,机械领域的科技人员应紧握时展脉搏,结合我国机械传动技术发展现状,积极探索机械传动新技术,研究出高品质的机械传动技术,逐渐缩短我国同世界发达国家机械传动技术水平差距,促使我国同世界机械传动技术水平接轨,成为技术强国,进而提升我国的国际地位。
1 概述
齿轮是机械传动的一个关键部件。科技论文。受材质、加工精度、热处理工艺、几何精度、状态及负荷、转速、环境等诸多因素的影响,齿轮会发生各种各样的损伤,如断齿、点蚀剥落、胶合或磨损,造成齿轮失效,至使齿轮的寿命差别很大,长则十几年,短则数十天。
在橡胶等行业常用的橡胶机械设备上,因受空间、重量等限制, 常采用制造简单、更换方便的开式齿轮传动。特别是开放式炼胶机的驱动齿轮由于负荷大, 受冲击严重, 转速低,不良, 而且工作环境恶劣,粉尘污染严重,齿面常发生剧烈磨损。其小齿轮长则使用十几个月,短则使用5 个月,其齿厚磨损量就已达到报废标准, 大齿轮寿命也只有2~3 年左右。频繁更换齿轮,不仅耗费了大量的人力、物力、财力,同时也常因检修而影响生产, 更重要的是因齿轮寿命不稳定,现场必须时时关注设备的安全运行问题,现场人员思想压力较大。科技论文。
2原用齿轮的磨损失效分析
由于开放式炼胶机作业区的空气中漂浮有大量粉尘, 这些微粒多为碳黑、钙、硅等元素的化合物,其中有些颗粒硬度超过齿轮齿面硬度,当这些颗粒落到齿面上, 则被油脂粘附在上面不易滑落,随着轮齿的相互啮合, 受强大压力作用, 较硬的粉尘颗粒被嵌入齿面;因为齿轮齿面间是滚滑混合运动,粉尘颗粒被挤搓前进,就会在齿面上划出一条条鳞刺状划痕;继续受压应力作用, 一个个鳞刺疲劳脱落, 就形成磨损颗粒。科技论文。随着磨粒越来越多, 齿面磨损会越来
越快,严重时会一层层剥下,或一条条撕脱。
3 开放式炼胶机驱动齿轮的修复方法
开放式炼胶机在橡胶混炼工艺中,因其负载高,操作环境差,因而造成驱动齿轮的主要失效形式是,齿轮齿面磨损。
以某厂炼胶车间XK560炼胶机为例,在大修理中出现以下情况,大小驱动齿轮磨损严重。实测数据为,小驱动齿轮齿根厚20mm,大驱动齿轮齿根厚28mm。
一、 修理方案的选择:1 更换新的大小驱动齿轮。
2复焊法修复大小驱动齿轮。
3大小驱动齿轮换位修复法。
二、 方案的比较:如果磨损后的齿根强度足够的话,第3种方案最为经济可靠,而且修理工艺简便易行。
三、 为防止磨损后的轮齿发生折断,对轮齿的弯曲强度进行如下校核,为安全起见,假定全部载荷都作用在一个轮齿齿顶上,轮齿根部受到弯矩最大,轮齿相当于一个悬臂梁,磨损后的齿根处是危险断面,其弯曲应力最大。在校对时应保证驱动齿轮σb不超过许用弯曲应力[σb]。
即
图 1
式中K…载荷系数.取K=1.3
T1…小驱动齿轮传动的扭矩. XK560开放式炼胶机 取8.562×106Nmm
αf…负荷线与O点速度方向之间的夹角.载荷作用角,取30°
Lf…危险截面与压力Ft的距离. 取Lf=34mm (实侧值)
b…齿轮工作宽度. 已知为270mm
d1…小驱动齿轮分度圆直径. 已知为288mm
α…齿轮压力角. 取α=20°
[σb]…许用弯曲应力. 查表计算得 152N/mm2
S1…磨损后的齿根危险截面宽度. Mm
计算结果
S1≥18.37mm
图2图 3
因为小驱动齿轮齿根厚实侧值为20mm,大驱动齿轮齿根厚实侧值28mm。
因此齿根危险截面实侧值均大于S1值。所以在此齿轮反面修复法对的弯曲
强度来讲是不存在问题的。但从结构方面来讲,小驱动齿轮可不经任何直接
反面装配。而大驱动齿轮的结构如图2,由于其台阶的影响不能直接反面配.
于是提出将齿轮台阶切断,将原大驱动齿轮结构分成2件,即圆套1齿轮将齿
轮2原斜键加工成与原斜度相反的键槽后反面装配的方案如图3.
这样键的工作长度减少了,需对它进行强度校核,楔件联接装配后的受力情况,如图4a所示,其主要失效形式是相互楔紧的工作面被压挤,故应校核各工作面的抗挤压强度.
当传递扭矩时(图4b) 为了简化把键和轴视为一体,并将下放分布在半圆柱面上径向压力集中力N代替,由于沿键的工作长度L及沿宽度b上的压力分布情况均较以前发生了变化,压力的合力N不再通过轴心.计算时假设沿键长均匀分布,沿键宽为三角形分布, 则整个工作面上压力合力N的最大许用值为
N =bL[σb]P/2
X =b/6 Y =d/2
取键与轮毂及键与键与轴槽面的摩擦系数f,则可近似求得允许的传递扭矩为:
T=1/12bL(b﹢6fd)[σb]N㎜
修理后的楔键应满足下列关系
T=1/12bL(b﹢6fd)[σb]≥T
式中 T--键传递的扭矩 Nmm
b--键宽. 已知b=70mm
L--键的工作长度 已知L=270mm
f--摩擦系数 0.15 (查表)
d--轴径 已知d=300mm
[σb]-许用挤压应力 90MPa
T1-工作扭矩 3.45×107 N㎜ (XK560开放式炼胶机计算值)
将以上数据代入(3)得
T=4.82×107N㎜ ≥ T1
即键的工作长度虽然减少,但强度足够,证明该方案可行,根据以上计算结果,可采用换位修复法,此法维修工艺简单,维修费用低,比更换一对驱动齿轮节约费用20000元.
图 4a 图 4b
4 结论
但需要说明的一点是,采用此法,由于齿厚未恢复到原齿厚,同时轮齿在一个方向上作用负荷后又反方向作用时,其弯曲疲劳寿命、疲劳极限都将减少.因此,在使用寿命上不能达到原设计要求,此外,对装有反转点动及反接制动装置的开炼机,在反转时有较大的冲击,尽管如此,笔者认为,这种修复齿轮的实际生产中是确实可行的,特别对大驱动齿轮的修复效益是显著的.此法在该厂开炼机的大修中已多次使用过,如果能在齿厚磨损刚超过1/5齿厚时进行反面修复,效果更好,此法也同样适用于速比齿轮及其他传动齿轮的修复.
参考文献:
〔1〕橡胶工业手册第七分册 化学工业出版社,1982
〔2〕材料力学 浙江大学主编 人民教育出版社,1979
〔3〕机械设计手册(第三版) 化学工业出版社,1993
〔4〕实用机械传动设计手册 科学出版社。1994
一、引言
液压控制技术是以流体力学、液压传动和液力传动为基础,应用现代控制理论、模糊控制理论,将计算机技术、集成传感器技术应用到液压技术和电子技术中,为实现机械工程自动化或生产现代化而发展起来的一门技术,它广泛的应用于国民经济的各行各业,在农业、化工、轻纺、交通运输、机械制造中都有广泛的应用,尤其在高、新、尖装备中更为突出。随着机电一体化的进程不断加快,技术装各的工作精度、响应速度和自动化程度的要求不断提高,对液压控制技术的要求也越来越高,文章基于此,首先分析了液压伺服控制系统的工作特点,并进一步探讨了液压传动的优点和缺点和改造方向。
二、液压伺服控制系统原理
目前以高压液体作为驱动源的伺服系统在各行各业应用十分的广泛,液压伺服控制具有以下优点:易于实现直线运动的速度位移及力控制,驱动力、力矩和功率大,尺寸小重量轻,加速性能好,响应速度快,控制精度高,稳定性容易保证等。
液压伺服控制系统的工作特点:(1)在系统的输出和输入之间存在反馈连接,从而组成闭环控制系统。反馈介质可以是机械的,电气的、气动的、液压的或它们的组合形式。(2)系统的主反馈是负反馈,即反馈信号与输入信号相反,两者相比较得偏差信号控制液压能源,输入到液压元件的能量,使其向减小偏差的方向移动,既以偏差来减小偏差。(3)系统的输入信号的功率很小,而系统的输出功率可以达到很大。因此它是一个功率放大装置,功率放大所需的能量由液压能源供给,供给能量的控制是根据伺服系统偏差大小自动进行的。
综上所述,液压伺服控制系统的工作原理就是流体动力的反馈控制。即利用反馈连接得到偏差信号,再利用偏差信号去控制液压能源输入到系统的能量,使系统向着减小偏差的方向变化,从而使系统的实际输出与希望值相符。
在液压伺服控制系统中,控制信号的形式有机液伺服系统、电液伺服系统和气液伺服系统。机液伺服系统中系统的给定、反馈和比较环节采用机械构件,常用机舵面操纵系统、汽车转向装置和液压仿形机床及工程机械。但反馈机构中的摩擦、间隙和惯性会对系统精度产生不利影响。电液伺服系统中误差信号的检测、校正和初始放大采用电气和电子元件或计算机,形成模拟伺服系统、数字伺服系统或数字模拟混合伺服系统。电液伺服系统具有控制精度高、响应速度高、信号处理灵活和应用广泛等优点,可以组成位置、速度和力等方面的伺服系统。
三、液压传动帕优点和缺点
液压传动系统的主要优点液压传动之所以能得到广泛的应用,是因为它与机械传动、电气传动相比,具有以下主要优点:
1液压传动是由油路连接,借助油管的连接可以方便灵活的布置传动机构,这是比机械传动优越的地方。例如,在井下抽取石油的泵可采用液压传动来驱动,以克服长驱动轴效率低的缺点。由于液压缸的推力很大,且容易布置。在挖掘机等重型工程机械上已基本取代了老式的机械传动,不仅操作方便,而且外形美观大方。
2液压传动装置的重量轻、结构紧凑、惯性小。例如相同功率液压马达的体积为电动机的12%~13%。液压泵和液压马达单位功率的体积目前是发电机和电动机的1/10,可在大范围内实现无级调速。借助阀或变量泵、变量马达可实现无级调速,调速范围可达1:2000,并可在液压装置运行的过程中进行调速。
3传递运动均匀平稳,负载变化时速度较稳定。因此,金属切削机床中磨床的传动现在几乎都采用液压传动。液压装置易于实现过载保护,使用安全、可靠,不会因过载而造成主件损坏:各液压元件能同时自行,因此使用寿命长。液压传动容易实现自动化。借助于各种控制阀,特别是采用液压控制和电气控制结合使用时,能很容易的实现复杂的自动工作循环,而且可以实现遥控。液压元件己实现了标准化、系列化、和通用化,便于设计、制造和推广使用。
液压传动系统的主要缺点:1液压系统的漏油等因素,影响运动的平稳性和正确性,使液压传动不能保证严格的传动比:2液压传动对油温的变化比较敏感,温度变化时,液体勃性变化引起运动特性变化,使工作稳定性受到影响,所以不宜在温度变化很大的环境条件下工作:3为了减少泄漏以及满足某些性能上的要求,液压元件制造和装配精度要求比较高,加工工艺比较复杂。液压传动要求有单独的能源,不像电源那样使用方便。液压系统发生的故障不易检查和排除。
总之,液压传动的优点是主要的,随着设计制造和使用水平的不断提高,有些缺点正在逐步加以克服。
四、机床数控改造方向
(一)加工精度。精度是机床必须保证的一项性能指标。位置伺服控制系统的位置精度在很大程度上决定了数控机床的加工精度。因此位置精度是一个极为重要的指标。为了保证有足够的位置精度,一方面是正确选择系统中开环放大倍数的大小,另一方面是对位置检测元件提出精度的要求。因为在闭环控制系统中,对于检测元件本身的误差和被检测量的偏差是很难区分出来的,反馈检测元件的精度对系统的精度常常起着决定性的作用。在设计数控机床、尤其是高精度或太中型数控机床时,必须精心选用检测元件。所选择的测量系统的分辨率或脉冲当量,一般要求比加工精度高一个数量级。总之,高精度的控制系统必须有高精度的检测元件作为保证。
(二)先局部后整体。确定改造步骤时,应把整个电气设备部分改造先分成若干个子系统进行,如数控系统、测量系统、主轴、进给系统、面板控制与强电部分等,待各系统基本成型后再互联完成全系统工作。这样可使改造工作减少遗漏和差错。在每个子系统工作中,应先做技术性较低的、工作量较大的工作,然后做技术性高的、要求精细的工作,做到先易后难、先局部后整体,有条不紊、循序渐进。
[1]肖人济.利用CAD实现参数化设计[J].机械设计,2007(4).
[2]郑清燕.基于CAD的快速设计的若干关键技术研究[J].机械制造,2008(2).
[3]陈炜,董洪.实现智能化CAD的汽车覆盖件模具结构设计[J].机械设计于研究,2009(4).
[4]纪陈恳.在CAD开发中实现参数化设计模式研究[J].机械设计,2010(5).
[5]陈卫伟.CAD参数化设计在机械制造中的应用[J].机械设计与制造,2009(14).
[6]段约光.基于工程数据库的CAD系统参数设计研究[J].模具工业,2008(2).
[7]韩冠宇.智能化机械传动装置CAD系统[J].机械设计,2009(5).
参考文献
[1]国土资源部.第二次全国土地调查培训教材[M].北京:中国农业出版社,2007.
[2]马俊海,吕长广.全野外数字测图技术的现状与发展趋势[J].测绘与空间地理信息,2006,29(5):15—17.
[3]佟士懋.AutoCADActiveX/VBA二次开发技术基础及应用实例[M].北京:国防工业出版社,2006.
[4]梁雪春,崔洪斌,吴义忠.AutoCAD实用教程[M].北京:人民邮电出版社,1998.
参考文献
[1][美]DonaldA.Neamen著,赵桂钦,卜艳萍.译,电子电路分析与设计.电子工业出版社,2003.
[2]ConnellyJA,ChoiP.MacromodelingwithSPICE,Prentice-Hall,1995.
[3]FenicalLH.Pspice:ATutorlal>Prentice-Hall,1992.
[4]谢嘉奎主编,电子线路.高等教育出版社,2000.
[参考文献]
[1]金映丽,王继军,顾宏民,蜗轮蜗杆传动CAD系统的研究与开发[J.沈阳工业大学学报,2004。26(2):124-126。
[2]乔桂玲,吕莉,蜗轮蜗杆的参数化设计与绘图[J],煤矿机械,2007,28(2):85-88。
液压伺服控制系统的工作特点:(1)在系统的输出和输入之间存在反馈连接,从而组成闭环控制系统。反馈介质可以是机械的,电气的、气动的、液压的或它们的组合形式。(2)系统的主反馈是负反馈,即反馈信号与输入信号相反,两者相比较得偏差信号控制液压能源,输入到液压元件的能量,使其向减小偏差的方向移动,既以偏差来减小偏差。(3)系统的输入信号的功率很小,而系统的输出功率可以达到很大。因此它是一个功率放大装置,功率放大所需的能量由液压能源供给,供给能量的控制是根据伺服系统偏差大小自动进行的。
综上所述,液压伺服控制系统的工作原理就是流体动力的反馈控制。即利用反馈连接得到偏差信号,再利用偏差信号去控制液压能源输入到系统的能量,使系统向着减小偏差的方向变化,从而使系统的实际输出与希望值相符。
在液压伺服控制系统中,控制信号的形式有机液伺服系统、电液伺服系统和气液伺服系统。机液伺服系统中系统的给定、反馈和比较环节采用机械构件,常用机舵面操纵系统、汽车转向装置和液压仿形机床及工程机械。但反馈机构中的摩擦、间隙和惯性会对系统精度产生不利影响。电液伺服系统中误差信号的检测、校正和初始放大采用电气和电子元件或计算机,形成模拟伺服系统、数字伺服系统或数字模拟混合伺服系统。电液伺服系统具有控制精度高、响应速度高、信号处理灵活和应用广泛等优点,可以组成位置、速度和力等方面的伺服系统。
2、液压传动帕优点和缺点
液压传动系统的主要优点液压传动之所以能得到广泛的应用,是因为它与机械传动、电气传动相比,具有以下主要优点:
1液压传动是由油路连接,借助油管的连接可以方便灵活的布置传动机构,这是比机械传动优越的地方。例如,在井下抽取石油的泵可采用液压传动来驱动,以克服长驱动轴效率低的缺点。由于液压缸的推力很大,且容易布置。在挖掘机等重型工程机械上已基本取代了老式的机械传动,不仅操作方便,而且外形美观大方。
2液压传动装置的重量轻、结构紧凑、惯性小。例如相同功率液压马达的体积为电动机的12%~13%。液压泵和液压马达单位功率的体积目前是发电机和电动机的1/10,可在大范围内实现无级调速。借助阀或变量泵、变量马达可实现无级调速,调速范围可达1:2000,并可在液压装置运行的过程中进行调速。
3传递运动均匀平稳,负载变化时速度较稳定。因此,金属切削机床中磨床的传动现在几乎都采用液压传动。液压装置易于实现过载保护,使用安全、可靠,不会因过载而造成主件损坏:各液压元件能同时自行,因此使用寿命长。液压传动容易实现自动化。借助于各种控制阀,特别是采用液压控制和电气控制结合使用时,能很容易的实现复杂的自动工作循环,而且可以实现遥控。液压元件己实现了标准化、系列化、和通用化,便于设计、制造和推广使用。
液压传动系统的主要缺点:1液压系统的漏油等因素,影响运动的平稳性和正确性,使液压传动不能保证严格的传动比:2液压传动对油温的变化比较敏感,温度变化时,液体勃性变化引起运动特性变化,使工作稳定性受到影响,所以不宜在温度变化很大的环境条件下工作:3为了减少泄漏以及满足某些性能上的要求,液压元件制造和装配精度要求比较高,加工工艺比较复杂。液压传动要求有单独的能源,不像电源那样使用方便。液压系统发生的故障不易检查和排除。
总之,液压传动的优点是主要的,随着设计制造和使用水平的不断提高,有些缺点正在逐步加以克服。
3、机床数控改造方向
(一)加工精度。精度是机床必须保证的一项性能指标。位置伺服控制系统的位置精度在很大程度上决定了数控机床的加工精度。因此位置精度是一个极为重要的指标。为了保证有足够的位置精度,一方面是正确选择系统中开环放大倍数的大小,另一方面是对位置检测元件提出精度的要求。因为在闭环控制系统中,对于检测元件本身的误差和被检测量的偏差是很难区分出来的,反馈检测元件的精度对系统的精度常常起着决定性的作用。在设计数控机床、尤其是高精度或太中型数控机床时,必须精心选用检测元件。所选择的测量系统的分辨率或脉冲当量,一般要求比加工精度高一个数量级。总之,高精度的控制系统必须有高精度的检测元件作为保证。
(二)先局部后整体。确定改造步骤时,应把整个电气设备部分改造先分成若干个子系统进行,如数控系统、测量系统、主轴、进给系统、面板控制与强电部分等,待各系统基本成型后再互联完成全系统工作。这样可使改造工作减少遗漏和差错。在每个子系统工作中,应先做技术性较低的、工作量较大的工作,然后做技术性高的、要求精细的工作,做到先易后难、先局部后整体,有条不紊、循序渐进。
(三)提高可靠性。数控机床是一种高精度、高效率的自动化设备,如果发生故障其损失就更大,所以提高数控机床的可靠性就显得尤为重要。可靠度是评价可靠性的主要定量指标之一,其定义为:产品在规定条件下和规定时间内,完成规定功能的概率。对数控机床来说,它的规定条件是指其环境条件、工作条件及工作方式等,例如温度、湿度、振动、电源、干扰强度和操作规程等。这里的功能主要指数控机床的使用功能,例如数控机床的各种机能,伺服性能等。
很多创新成果在取得以后回望,当时的设想都是三个字――“不可能”。然而,机会往往就蕴藏在这诸多“不可能”之中。赵亚平教授深知这一点。多年来,他锁定新型环面蜗杆传动、齿轮啮合理论等方面进行研究与开发,其创新成果应用前景广阔,深受学界好评。
二包环面蜗杆传动具备一系列优良特性,但是对各种误差变形十分敏感,
限制了其推广应用。平面二包传动,由于蜗杆边齿变尖与根切的限制,使其无法应用于蜗杆多头数或小传动比的场合。赵亚平据此提出了双圆环面二包传动这种新型环面蜗杆传动装置,克服了上述不足。他提出的两点下山割线法(DPDS方法)是研究线共轭曲面啮合特性的有力数学工具。在研究过程中,他不但注重考察诱导主曲率和滑动角等局部啮合特性参数,而且注重考查蜗轮齿面共轭区范围,蜗杆工作长度及瞬时接触线的分布等全局啮合特性,从而丰富发展了蜗杆副的啮合几何学。目前,双圆环面二包传动作为一种新型机械传动装置,已经获得多项专利授权。
业内人士都知道,标准二包传动,蜗轮齿面中部存在二次接触区,瞬时接触线相互交叉,接触频率高,容易发生疲劳点蚀,是蜗轮齿面的薄弱环节。可以通过角修形,自然地切去蜗轮齿面的二次接触区,使原接触区和新接触区都和蜗杆螺旋面密切,从而大幅度地提高二包传动的啮合质量。赵亚平在此基础上导出了一般化的角修形条件,指出了角修形的物理意义;数字化地论证了原接触区和新接触区都和蜗杆螺旋面密切,但密切的程度有所不同;阐述了角修形切除二次接触区、同时使得蜗杆工作长度变短的机理。相关结果发表于国际期刊Science China Technological Sciences,审稿意见认为:“论文主要内容是对采用作者提出的角修正的双圆环面二次包络环面蜗杆传动齿面啮合情况进行分析。为此主要工作是建立传动数学模型及其啮合特性方程,并进行实例分析。论文对于该种传动性能研究具有重要的指导意义。有发表价值。双圆环面二次包络环面蜗杆传动属尚未充分研究和开发的环面蜗杆传动,开展相关研究,特别是采用修形技术提高其啮合性能具有一定的理论意义。具有一定的理论价值。算例丙的蜗杆头数达到12,远远突破一般蜗杆传动的情况。”相关论文获得过湖北省、及湖北省机械工程学会的优秀论文奖励。目前,该研究已获得角修正双圆环面二包传动及其制造方法的发明专利授权。
除此之外,针对标准传动存在二次接触区,啮合性能有待进一步提高和角修形传动虽然啮合性能优良,但制造工艺比较复杂的问题,赵亚平提出了高度修形、中心距修形及传动比修形等一系列制造工艺简单且修形效果优秀的修形方案,使得环面蜗杆副双线接触的机理有了清晰明确的解释。同时,他还对环面蜗杆传动特性进行了研究,运用弹流理论和齿轮啮合理论,导出了任意啮合点处,卷吸速度、角和弹流膜厚系数的计算公式。摆脱开材料、载荷等因素的影响,以角反映成膜条件,以弹流膜厚系数反映油膜厚度,便于衡量整个接触区内特性的差异,有利于分析工艺参数对蜗杆副性能的影响。有关结果曾经在CIST2008&ITS-IFToMM2008(北京)学术会议上宣读,并发表于国际期刊TribologyTransactions。
致力于解决生产实际中的问题
出身工科背景,赵亚平一直希望自己的研究成果能够得到推广应用,服务经济社会发展。为此,他多方探索,并取得了一系列成果。
在生产过程中,由于能够实现多齿双线接触,各类环面蜗杆传动对各种误差变形都比较敏感。这是限制环面蜗杆传动应用推广的主要问题,也是环面蜗杆传动的主要不足之处。而解决这个问题办法之一,是通过失配修形,使得蜗轮副变瞬时线接触为瞬时的点接触。当然,这里的所谓点接触是理论上的。实际上,由于齿面的弹性,受载之后,瞬时接触点扩展成瞬时接触椭圆,沿接触迹线众瞬时接触椭圆集成齿面上的接触区。上述失配修形方法,早已成功应用于锥齿轮传动和准双曲面齿轮传动。但是对于环面蜗杆传动,相关研究进展比较缓慢,主要是因为,环面蜗杆副的齿面非常复杂,没有找到有效的方法计算瞬时接触点。
赵亚平结合自己在相关领域的经验,提出了两阶段下山割线法(TSDS方法),用于计算失配环面蜗杆传动的瞬时接触点。该法无需计算包含偏导数的Jacobi矩阵,对迭代初值的敏感性低,还能克服迭代过程中的奇异性,适宜用来求解复杂的非线性方程组;改进了确定点接触失配齿轮副瞬时接触椭圆的局部综合方法,使得瞬时接触点邻域内曲率干涉的判别更为合理;发现以标准蜗杆和Ⅰ型蜗轮相配,组成的失配蜗轮副对各种装配误差均不敏感,能够避免曲率干涉,实现较好的点接触,而且蜗杆工作部分较长,具备可观的承载能力;由具体算例计算出蜗轮转角误差曲线,表明了它具有近似抛物线形状,说明所提出的失配方式,具有一定的减轻振动、吸收冲击的效果。有关结果发表于国际期刊Computer-AidedDesign。
他的研究为失配环面蜗杆副的正确设计奠定了基础。
主管单位:中国航空工业第一集团公司
主办单位:中国航空学会
出版周期:月刊
出版地址:北京市
语
种:中文
开
本:大16开
国际刊号:1000-8055
国内刊号:11-2297/V
邮发代号:
发行范围:国内外统一发行
创刊时间:1986
期刊收录:
CA 化学文摘(美)(2009)
CBST 科学技术文献速报(日)(2009)
Pж(AJ) 文摘杂志(俄)(2009)
EI 工程索引(美)(2009)
中国科学引文数据库(CSCD―2008)
核心期刊:
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(2000)
中文核心期刊(1996)
中文核心期刊(1992)
期刊荣誉:
Caj-cd规范获奖期刊
联系方式
一、改造要求
CA6140车床主要用于对中小型轴类、盘类及螺纹零件的加工,加工这些零件工艺上要求机床应该满足以下要求:(一)能够控制主轴正反转,实现不同切削速度的主轴变速;(二)刀架能够实现纵向和横向的进给运动,并具有在换刀点自动改变四个刀位完成选择刀具的功能;(三)加工螺纹时,应保证主轴转一转,刀架移动一个加工螺纹的螺距或导程。
二、机械部分的改造
(一)降速比计算
(二)转动惯量计算
(三)刚度计算
三、安装调试
安装调试必须按照事先确定好步骤和要求进行,调试中首先测试安全哦保护系统的灵敏度,以防止人身和设备事故发生,调试现场必须要清理干净,各运动坐标拖板处于全行程的中心位置,先空载实验,然后加载实验。
四、结语
经过大量的实践证明,普通数控机床改造具有一定的可行性、实用性和稳定性,企业要在激烈的市场竞争中获得生存、得到发展,它必须在最短的时间内以优异的质量、低廉的成本,制造出合乎市场需要的、性能合适的产品,而产品质量的优劣,制造周期的快慢,生产成本的高低,又往往受工厂现有加工设备的直接影响。目前,采用先进的数控机床,已成为我国制造技术发展的总趋势。购买新的数控机床是提高数控化率的主要途径,而改造旧机床、配备数控系统把普通机床改装成数控机床也是提高机床数控化率的一条有效途径。
参考文献:
引言
齿轮传动是机械传动中应用最广泛的一种传动方式,由于渐开线的特点,渐开线齿轮又是齿轮传动最常用的齿轮类型。近年来随着CAD/CAE/CAM/CAPP技术的迅速发展,为了便于利用计算机仿真软件对齿轮传动进行运动、振动噪音、轮齿修型等分析,齿轮的精确参数化建模已经成为一个必要过程,而齿轮的建模精度又对计算结果起到决定性的作用。渐开线直齿圆柱齿轮由于螺旋角为零,因此精确建模已经没有问题,而渐开线斜齿轮由于齿面为空间渐开线螺旋面,且其端面齿形与法面齿形不同,三维精确参数化建模过程比较困难。在目前所能查找的论文中提出了很多斜齿轮精确参数化建模的方法,但仔细研究发现里面所提到的很多方法根本就无法实现斜齿轮的精确参数化建模,为此先从理论上对斜齿轮参数化精确建模进行讨论。
一、参数化建模中齿数与模型分析
在斜齿轮的精确建模中有一部分文献没有考虑到齿数对建模的影响[1][3][4][5][6][7][8]。没有考虑齿根圆与基圆之间的大小关系,根据斜齿轮的齿根圆与基圆公式有:
df=d-2・mn(h*an+c*n)(1)
db=d・cosat(2)
df=db=d-2・mn(h*an+c*n)-d・cosat(3)
由公式(3)可以得到
=z・--2.5(4)
如果斜齿轮的齿根圆 与基圆 相等,则公式(4)右边等于零。
z・--2.5(5)
对应标准齿轮有an=200,这样斜齿轮的齿根圆与基圆之间的大小关系就是螺旋角β、齿数z和法面模数mn的函数。当齿根圆与基圆相等时,那么斜齿轮的齿数z与斜齿轮的螺旋角β就成一函数关系,在此把这个函数关系用z=f(β)来表示,这说明斜齿轮的齿根圆与基圆相等的分界线是变化的,而不是恒定的。
齿轮精确建模时,当齿根圆小于基圆的时候,齿根圆与基圆之间是没有渐开线的,这部分曲线是刀具的齿顶加工出来的过渡曲线;当齿根圆大于基圆时,齿廓曲线全部为渐开线。所以斜齿轮精确建模一定要分这两种情况来讨论,为了方便在此用表格来给出两者的数据关系。
二、螺旋角与斜齿轮模型的关系分析
现有很多论文中斜齿轮的精确参数化建模都是先利用渐开线表达式生成渐开线一条齿廓曲线,把这个端面曲线沿螺旋线进行沿引导线“扫掠”或“曲面已扫掠”命令来生成一个斜齿轮的轮齿,然后利用环形阵列生成斜齿轮的精确模型[1][2][3][4][5][6][7][8]。
(一)螺旋角的关系推导
斜齿轮的螺旋角是指分度圆上螺旋线的切线与轴线之间所夹的角度。由下推出[10]:
tanβ=(6)
L-螺旋线的导程;
π・d-斜齿轮分度圆上的直径;
可以看出螺旋角是齿轮分度圆的一个函数,在同一齿轮中,任意圆周di上的螺旋角为:
tanβi=(7)
通过公式(7)可以看出,在不同的圆周上螺旋角是不同的。
(二)沿引导线扫掠策略
扫掠体的数学模型是,先进行路径规划,即将扫掠路径进行离散,求解出t时刻通过扫掠路径曲线上节点si的坐标,然后确定在每个节点上的投影面(法平面)方程,然后将物体向投影面(法平面)投影,当时间间隔足够小时,在满足一定的精度情况下,把时刻t和t+t时刻之间生成的扫掠体看成是由这些投影曲线组成的面域绕转动极轴转动生成的实体。
为了简化求解过程, 扫掠路径通常写成式的参数形式:
那么要想对一个物体进行扫掠必须给出扫掠路径和扫掠物体,在斜齿轮精确建模中,扫掠路径是空间螺旋线,扫掠物体为渐开线的齿廓,这样扫掠出来的齿形随可以参数化,但在齿形上的每一点的法线都为扫掠路径的切矢量,如果在创建时,给定的扫掠路径是分度圆上的螺旋线(在软件中这个命令是单参数的),则得到的轮齿是任意一点的螺旋角都等于分度圆上的螺旋角,通过公式(7)可以看出这是不正确的。三维模型图参考图1.4。
(三)沿多条引导线已扫掠策略
一条螺旋线不可能得到正确的轮齿,如果采用多条螺旋线做扫掠路径只能使用软件中的“曲面已扫掠”命令来实现,当扫掠路径比较多的时候可以得到比较精确的轮齿模型,但这个命令是不支持参数化的,也得不到参数化模型。
下面用一个实例进行验证:
图四是将端面的一个齿廓面沿引导线扫掠生成的轮齿形状,此螺旋角为β=200,可以看出轮齿的形状发生了严重的扭曲,且随着螺旋角的度数增大,扭曲现象就越明显。
图五是将端面的一个齿廓面利用曲面里面的已扫掠生成的轮齿形状,可以看出当使用一条螺旋线的时候,轮齿发生了扭曲,不可能产生精确地轮齿。当增多引导引导线串时,扭曲程度降低,另外通过图三与图二的对比可以看出两个操作都产生了扭曲,但扭曲程度是不一样的。
通过上述论证,要想得到参数化的精确模型,必须使用扫掠命令来实现,可以对此命令进行二次开发,给定分度圆上的螺旋角,然后设定渐开线上上段的个点螺旋角的值是线性递增的,下半段式线性递减的,使递增和递减的值分别等于齿顶圆上螺旋角和齿根圆上的螺旋角,这样既可以参数化又可得到精确的模型
三、阵列操作与参数化分析
在很多文献中当单个齿生成后通过阵列的方法来生成整个斜齿轮模型,通常在软件中有两种生成方法:第一种是特征操作下的阵列(引用下的环形阵列)第二中方法是变换下的环形阵列,这两种方法本质上是不同的,引用下的环形阵列是不能参数化的,而特征操作下的环形阵列是可以参数化的。
所以要想进行参数化设计必须采用特征操作下的沿引导线扫掠来生成轮齿,然后再进行特征操作下的环形阵列来得到参数化模型。
四、结束语
本文主要对已有的斜齿轮精确参数化建模的方法进行分析,推导出其不能得到精确参数化模型的理论原因,为以后斜齿轮的精确建模提供理论上的参考依据。精确模型一定是理论上推导证明出来的精确,还要注意当通过计算机算法去实现出来后一定存在误差的,那么必须对误差进行分析,确定误差的范围是不是在后续分析的允许范围内。
参考文献:
[1]白剑锋等.UG在渐开线斜齿轮参数化设计中的应用[J].机械设计与制造,2006,(70).
[2]邵家云,任丰兰.UG中渐开线斜齿轮的全参数化精确建模[J].农机使用与维修,2009,(1).
[3]赵向前,徐洪涛.基于UG4.0的斜齿圆柱齿轮的三维精确参数化建模[J].金属加工,2008,(2).
[4]鲁春艳.基于UG的齿轮齿条式转向器的虚拟设计与分析[J].苏州市职业大学学报,2009,(3).
[5]徐雪松,毕凤荣.基于UG的渐开线斜齿轮参数化建模研究[J].机械设计与制造,2003,(12).
[6]孙江宏,姚文席,吴平良.基于UG的斜齿轮三维参数化设计方法-扫描成型法[J].2003,(2).
[7]徐江敏,孟慧亮,苏石川.渐开线斜齿轮的参数化设计与应用[J].计算机应用技术,2008,(11).