绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇隧道工程论文范文,希望它们能为您的写作提供参考和启发。
一、概述
对重要的公路、铁路实现全线覆盖是运营商提高网络质量的一个重要环节,是提高综合竞争力的一个有力手段。从交通角度来看,目前大多数隧道的目的是覆盖盲区,因此需要结合交通线路的覆盖设计来制订专门的隧道覆盖解决方案。
隧道覆盖主要分为铁路隧道、公路隧道、地铁隧道等,每种隧道具有不同的特点,一般来说公路隧道比较宽敞,对隧道里面的覆盖状况,有车通过与无车通过时差别不大。车辆通过时,隧道内剩余空间较大,可根据实际情况选择尺寸大一些的天线,以获取较高的增益,使覆盖范围更大。而铁路隧道一般来说要狭窄一些,特别是当火车经过时,被火车填充后所剩余的空间很小,火车对隧道的填充会对信号的传播产生较大的影响,且天线系统的安装空间有限,使天线的尺寸和增益受到很大的限制。另外,不管是哪种隧道,都存在长短不一的状况,短的隧道只有几百米,而长的隧道有十几公里。在解决短隧道覆盖时,可采用灵活经济的手段,如在隧道口附近用普通的天线向隧道里进行覆盖。但是,这些手段可能在解决长隧道覆盖时不起作用,对于长隧道的覆盖必须采取其它一些手段。因此,对于每段隧道的解决方案可能都会有所区别,必须根据实际情况来选定覆盖解决方案。
在进行隧道覆盖规划之前,一般需要知道以下数据:
隧道长度、隧道宽度、隧道孔数(1、2)、覆盖概率(50%、90%、95%、98%、99%)、隧道结构(金属、混凝土)、载频数目、隧道中最小接收电平(一般为-85dBm到-102dBm)、隧道孔间距、AC/DC是否可用、墙壁能否打孔、隧道入口处的信号电平、隧道内部已有信号电平等。
二、隧道覆盖的信号源选择
为了提供隧道覆盖,一个GSM信号源与一套分布式系统是必要的。信号源的选择,需要根据隧道附近的无线覆盖状况和传输、话务、现有网络设备等情况来决定。隧道覆盖所采用的信号源包括宏蜂窝基站、微蜂窝基站、直放站等。
对于铁路、公路隧道覆盖来说,由于其话务量小,宏蜂窝基站作为信号源较为少用。但是,在城市地铁隧道中,人流量大,话务量也高,这种场合不仅要覆盖站台,而且还要覆盖铁路系统出口等地方,可采用容量较大的宏蜂窝基站。
使用宏蜂窝基站的优点是可以提供更多的信道资源、扩容较为容易、单个基站覆盖能力强;缺点是需要用电缆从BTS设备所在的机房引入信号覆盖隧道、增加了馈线损耗、需要较大的机房等配套设备、总的投资费用高。
对容量要求不是很高的隧道覆盖,可采用微峰窝基站。使用微蜂窝基站的优点是所需设备空间小、所需配套设备少、总的投资费用低。
如果附近有信号源可以利用,则可采用无线直放站来作为隧道覆盖的信号源。采用直放站往往是网络拓展的第一步,在网络容量上升后再用GSM基站来替换。采用直放站作为信号源的优点包括:无需传输、综合成本低、可将远处的话务带给施主小区,使小区的信道利用率更高、安装速度快等。无线直放站有宽带直放站和选频直放站两种,采用无线直放站会使得网络管理复杂度增加,不便维护,另外在采用选频直放站时,施主小区的频率发生变更后,直放站的频率也要进行调整,不利于整网规划和优化,施主天线和重发天线需要有足够的隔离度,造成安装空间上有些困难等缺点。除采用无线直放站以之外,也可采用光纤直放站作为信号源对隧道进行覆盖。
在实际工程之中,必须根据隧道长度、隧道附近的覆盖状况、基站分布、话务分布、建站条件等因素选择信号源,微蜂窝基站和直放站是隧道覆盖建设常用的信号源。
三、隧道覆盖的天馈系统选择
在选择好了GSM信号源之后,则必须根据实际情况配置天馈系统,对隧道进行覆盖。通常有三种不同配置的天馈系统:同轴馈电无源分布式天线、光纤馈电有源分布式天线、泄漏电缆。
1、同轴馈电无源分布式天线
这种覆盖方案的设计比较灵活、价格相对低、安装较方便。同轴电缆的馈管衰减较小,天线增益的选择主要取决于安装条件,在条件许可的情况下,可选用增益相对较高的天线,来提高覆盖范围。该方案的简化版就是采用单根天线对隧道进行覆盖,对于较短的隧道来说,这种方案确实是一种低成本解决方案。
2、光纤馈电有源分布式天线系统
在某些复杂的隧道覆盖环境中,可采用光纤馈电有源分布式天线系统来替代同轴馈电无源分布式天线系统。它更适用于覆盖地下隧道(地铁隧道)和站台。采用光纤馈电有源分布式天线系统的主要好处包括在室内安装的电缆数减少、可适用更细的电缆、采用光缆可降低电磁干扰、在复杂的网络中设计更灵活等,缺点是成本高。
3、泄露电缆
采用泄漏电缆进行隧道覆盖,是一种最为常用的方法,这种方法的好处在于:
可减小信号阴影和遮挡,在复杂的隧道中采用分布式天线,手机与某特定天线之间可能会受到遮挡,导致覆盖不好;
信号波动范围减少,与其它天线系统相比,隧道内信号覆盖均匀;
可对多种服务同时提供覆盖,泄漏电缆本质上是宽带系统,多种不同的无线系统可以共享同一泄漏电缆,考虑到在隧道中经常使用某些无线系统(寻呼系统、告警系统、广播等),采用共享一条泄漏电缆的方法,可省去架设多条天线的工程。
泄漏电缆覆盖设计是一项非常成熟的技术,其设计方案相对简单,本文不作重点分析。下面重点分析采用普通同轴馈电无源分布式天线进行隧道覆盖的设计方案。
四、隧道的无线传播
无线电波在隧道中传播时具有隧道效应,信号传播是墙壁反射与直射的结果,其中直射为主要分量。华为公司基于ITU-R建议,根据试验数据对传播模型进行了修正,得出一简单实用的隧道传播模型,用于进行隧道覆盖设计,该传播模型为:
Lpath=20lgf+30lgd―8dB
1)因为围岩要参与整个结构的承载,应尽量减少对围岩的扰动,充分保护岩体。
2)为充分发挥围岩承载能力,应允许并控制岩体的变形。施工中应采用能与围岩密贴、及时筑砌又能随时加强的柔性支护结构,就能通过调整支护结构来控制岩体的变形。
3)开口不利于结构形成整体的受力结构,为此,在施工过程中应使衬砌尽早封闭成整环。
4)利用信息化施工技术,合理布置监测点,及时掌握围岩及支护结构的应力和变形,通过监测信息的反馈及时调整支护参数。
5)多采用喷锚式初衬外加现浇混凝土二衬的复合式衬砌结构。二次衬砌等初衬施工完成、围岩基本稳定之后再施作。二次衬砌可以用来承担围岩流变等引起的后续荷载。基于上述描述,新奥法的精髓可以概括为十二字方针,即“少扰动、早喷锚、勤量测、快封闭”。新奥法自创立以来,在我国的诸多软弱破碎围岩中也得到了广泛而成功的应用,目前已经发展为山岭隧道及地下工程施工的一种重要方法。金鸡岭隧道所处地层围岩稳定性差,故采用新奥法修建,在修建过程中克服多种施工中的难题,取得了较大的成功。本文将对该隧道的施工技术进行系统地分析。
2工程概况
金鸡岭隧道位于鄂州市新庙镇月陂村,为双向四车道,非独立式双连拱隧道。隧道穿越的山体的最高海拔约为98.5m,隧道最大埋深约为40.7m。隧道起讫桩号为K37+870~K38+215,全长345m。进口隧道设计标高为左洞57.493m,右洞57.483m;出口隧道设计标高分别为左洞56.757m,右洞56.747m。隧道进口、出口采用端墙式洞门。隧道地段进出口及浅埋地段上覆岩体比较薄,风化相对更强烈,围岩变形模量较小、稳定性较差。隧道地段以层次多、结构较松散的软质、较软质岩石为多,有软弱的炭质层存在,岩石强度及稳定性较差,洞壁开挖容易产生较大不良变形,产生掉块、坍塌。
3施工技术方案
根据隧道的长度、现场地质条件及工期要求等因素,本隧道采用从进口单口掘进的施工方案。
3.1洞口施工
洞口工程主要施工流程如图1所示。因洞口围岩风化强烈、稳定性差,为保证其稳定性,在洞门表土开挖施工过程中,利用挖掘机而采用不爆破或弱爆破方式挖掘洞门土石方。为增加洞口稳定性及安全,采用强支护处理。在洞口边坡及影响范围内的仰坡上打设锚杆,为增强围岩的整体性和锚杆支护效果,锚杆打入方向应垂直于岩面。锚杆打入深度为4m。同时布置25cm×25cm的钢筋挂网,钢筋直径6.5mm,在钢筋挂网上喷射混凝土,形成锚喷支护。
3.2超前管棚注浆施工
为防止岩层坍塌和地表下沉,保证掘进和后续支护工艺安全,本工程洞口设置有22m长超前管棚作为临时超前支护。管棚采用φ127×4.5mm的钢管,钢管长24m,管棚与4榀I20b做成的拱架连接在一起,并用C25混凝土浇注,形成一个模拟的洞门,在临时洞门的防护下进行洞身开挖。长管棚内注浆采用水泥单液浆。水泥浆水灰比0.9∶1,注浆初压0.5~1.0MPa,终压2.0MPa。
3.3隧道段开挖
根据不同的地质断面,选择不同的开挖和支护方式。V类和Ⅳ类围岩地段采用三导洞超短台阶式开挖,施工时采用预裂爆破,上下台阶分开,采用短进尺,弱爆破。对于Ⅲ类围岩洞身开挖,采用全断面开挖,施工时采用光面爆破,循环进尺3.0m。中导洞的断面形式为圆顶直墙,整个断面全部开挖。采用光面爆破进行全断面开挖,爆破前用凿岩机钻眼掏槽。中导坑开挖完毕之后,对整个中导坑底板进行标高复核,用低标号砂浆铺底平整,然后进行底部锚杆施工。钢筋安装好后,分为基础及墙身两部分混凝土浇筑;基础采用普通拼装模板,墙身采用8m长模衬台车、滑模施工工艺进行施工。左右导洞采用全断面法开挖,左右正洞采用上下台阶法开挖,进洞口、出洞口8m范围内掘进进尺为0.5~1.0m,其余位置掘进进尺为1m(Ⅴ级围岩)或2m(Ⅳ级围岩)。
3.4初期支护
岩体开挖后须及时进行支护,以维持围岩稳定,保障后续施工有安全的工作空间。金鸡岭隧道施工中,采用中空注浆锚杆、砂浆锚杆、钢拱架、钢筋网、喷锚支护紧跟开挖面及时施作,以减少围岩暴露时间,抑制围岩变形,防止围岩在短期内松弛。各区段采用的初期支护参数如表3所示。
3.4.1砂浆锚杆
本工程选用20MnSiφ22砂浆锚杆,利用自制凿岩台架,风动凿岩机钻孔,孔深、孔位、外插角偏差应符合设计和规范要求。锚杆采用φ25钢筋按设计长度加工而成,按不同围岩的设计间距梅花形布置。砂浆锚杆的砂浆应拌制均匀并防止石块或其它杂物混入,随拌随用,初凝前必须用完毕。
3.4.2中空注浆锚杆
1)施工方法在隧洞的顶部采用中空注浆锚杆,型号采用D25型。首先需要使用风枪进行钻孔,然后使用注浆泵完成注浆工艺。2)注浆施工要点注浆压力控制是注浆施工关键,根据工程经验可取为地下水压的2~3倍。另外,还需根据围岩自身的裂隙阻力进行调整,最大压力值理论上不宜大于0.4MPa。而注浆的范围一般根据经验类比法或者现场注浆试验来进行确定,注浆量一般通过注浆压力达到0.3MPa来进行控制,单孔注浆量一般不超过1t。
3.4.3钢拱架支护
1)设置方法
钢拱架先在洞外分段加工,在端部设置法兰。安设前由运输车运至洞内,用人工进行螺栓连接和拼装。拼装完成之后,挂网喷浆。
2)施工要点
首先,在钢拱架架设之前应认真检查钢拱架的加工质量;在架设时,先清除底脚浮渣;如果遇到超挖的情况,尚应加设垫块,而中间部位的接头板应用砂或土体埋住,防止喷射混凝土堵住接头板上已经打好的螺栓孔。然后,按照设计要求,焊接系筋和纵筋,段与段之间设置垫片并确保螺栓被拧紧,以保证钢架的受力性能。同时要校核拱架中线的标高和尺寸。而拱架和围岩面之间尚需安设鞍形的垫块,使钢拱架与岩面之间贴实、压紧。
3.4.4钢筋网
按设计要求加工钢筋网,随受喷面起伏铺设,同定位锚杆焊接或绑扎固定牢固,钢筋网与受喷面的间隙以3cm左右为宜,混凝土保护层大于2cm。
3.4.5喷射混凝土
按设计要求的厚度在挂网上喷射混凝土,为保证施工质量,喷混凝土应当分段、分块。施工顺序上先喷墙、后喷拱顶,从下往上喷。为保证喷射混凝土的密实度,混凝土喷嘴应做直径为20cm~30cm的螺旋路径移动,反复缓慢地进行喷射。控制水压、压缩空气的风压,掌握好喷射距离,避免过多的回弹。如果设计厚度大于5cm,应分两层进行喷射,第二层需在第一层终凝一个小时之后进行,同时有必要对第一层的混凝土面层进行冲洗。
3.5二次衬砌
二衬的施工一般要等围岩变形稳定之后才能进行,而围岩稳定的判断要依据监测数据进行分析,等变形数据趋于收敛时方可。在本隧道的施工中,衬砌距离开挖面约为30m~40m之间,一方面能使各工序在空间上互不冲突,同时能保证围岩在开挖后无支护暴露的时间控制在合理的范围之内。隧道边墙及拱部二次衬砌的浇筑采用移动式液压模板台车和泵送混凝土整体浇筑,以保证二次衬砌的密实,超挖部分采用同级混凝土回填。每模衬砌混凝土连续浇筑,一次完成。二次衬砌施作时先浇筑仰拱和矮边墙,再立模进行拱部混凝土浇筑。
3.6施工监测
现场施工监测和监测数据的及时分析和反馈是及时了解围岩状况和隧道安全状况的基本手段,也是现代隧道施工的重要部分,是新奥法的核心之一。根据围岩情况,合理地选择监测断面、布置监测元件,合理频率的动态监测,实时分析监测数据,判断围岩状况,分析初衬和二衬是否达到隧道设计要求,并及时地反馈,从而使工程设计人员和施工人员能够及时调整设计和施工方案。
在施工之前主要开展的工作为可行性研究和勘察设计,以及施工前开展的招投标工作。前者涉及的内外联关系主要是隧道方案与整个路线工程,以及与自然和社会的相互作用,主要体现为方案与具体设计的合理性和科学性。后者主要涉及建设方与施工方的相互关系,即建设方与施工方的合同关系建立过程,其中关键因素是中标价格。
2)施工中的内外联关系。
施工阶段的和谐性是评价城市隧道工程建设和谐度的最主要内容。这一阶段整个工程建设过程的内外联关系可以划分为实体工程、机构人员和资金流转三个方面。实体工程方面:工程建设活动需要开挖岩土体、扰动地下水环境,隧道结构与岩土体发生相互作用;施工过程各部分、各工序发生相互作用;工程建设从外部环境获取大量的各类材料,又向环境输出废弃材料、废气和污水。机构人员方面:参与工程建设的业主、施工、监理、设计和监测检测等单位及其员工需要开展大量的互动工作,这些工作有管理与被管理、监督与被监督,以及相互协作等不同的角色关系。参与工程建设的单位还与社会其他单位或个人因材料采购、废弃物处置、污染物排放、共用其他社会资源等原因发生互动关系。资金流转方面:主要表现为承包商向监理、业主单位的资金申报审批,以及业主向承包商、承包商向材料供应商、服务提供商和劳务人员提供的资金拨付。资金流转的正确性、合理性和及时性,对工程建设活动的顺利运转也十分重要。
3)施工后的内外联关系。
施工后的内外联关系主要体现为隧道工程为社会提供服务,以及运营者对隧道进行的管理维修。隧道工程为社会提供服务:隧道方案越合理、自身状况越好,可以为社会经济发展提供的服务就越好,经济社会效益越明显。隧道工程的管理维护:管理维护一方面有利于保持隧道的健康状态和服务水平;另一方面需要花费一定的成本、对隧道运营产生一定的影响。过多、过频繁的维护和病害治理,说明隧道工程本身的建设质量存在不足。
2城市隧道和谐性的表现形式及影响因素
城市隧道工程建设的和谐性可以从技术、经济、社会和环境等四个系统得以体现,不同系统中又可细分为若干个方面,每个方面和谐性的影响因素不尽相同,相互之间可能存在重叠。
2.1城市隧道和谐性的表现形式
1)技术系统的和谐主要表现为安全、质量和进度三方面有保障。
安全方面包括不发生各种形式的安全事故,不因安全事故造成财产损失和人员伤亡;质量方面包括不出现各种类型的质量问题,工程各部分功能正常、系统相互协调;进度方面包括工程总进度得以保障,各分项或分部工程得到协调一致的推进。
2)经济系统的和谐性主要体现为业主(代表政府或社会)、承包商(机构)和参与建设的员工在经济上取得好的效益。
业主方面主要为获得合理最大化的投资回报,按时据实向承包商支付各项费用,不因安全、质量或进度等问题产生额外费用;承包商方面主要体现为在保证安全、质量的前提下获得最大的经济效益,不因安全、质量和进度问题额外增加成本;员工方面主要体现为按时获得与付出劳动相对应、与区域或行业收入水平相协调的劳动报酬,不因窝工、违规作业、工伤事故等造成不必要的损失。
3)社会系统的和谐性主要体现为外联关系、机构关系协调和员工关系等三方面处于协调、顺畅状态。
外联关系方面体现为工程建设有效避免对外部单位与个人的干扰、破坏,能够获得外部单位与个人的支持。机构关系方面体现为所有参建单位恪守本职工作,相互合作与支持,不因相互协调不畅导致正常施工中断、延误问题的正常处理等。员工关系方面体现为所有参与建设的管理者、技术人员和工人互相尊重、理解和支持,相互交流沟通顺畅,能够和谐共处。
4)环境系统的和谐性主要体现为资源消耗水平低、污染物得到有效控制和处理、施工环境扰动得到控制。
在资源消耗水平方面主要体现为工程建设消耗的各类建筑材料较少、能耗和用水量较低;在污染控制水平方面主要体现为产生的污染较少,并得到及时有效的处置,由于工程建设参数的废弃物较少等。施工扰动控制水平和谐性在施工扰民控制方面主要体现为施工产生的振动、噪声等对周边居民及单位的影响得到有效控制,对周边景观的破坏得以控制并及时得到修复。
2.2城市隧道和谐性的影响因素
通过城市隧道工程建设内外联关系的分析,城市隧道和谐性的影响因素可以归纳为以下15个方面:方案社会评价水平(C1)、施工中标价格水平(C2)、参建机构资信水平(C3)、安全事故控制水平(C4)、质量缺陷控制水平(C5)、设计变更控制水平(C6)、施工工期控制水平(C7)、反馈决策顺畅水平(C8)、企业财务健康水平(C9)、员工薪酬发放水平(C10)、内联关系协调水平(C11)、外联关系协调水平(C12)、废弃物处置水平(C13)、污染物处置水平(C14)、景观修复营造水平(C15)。
3城市隧道和谐度的层次分析法评价
城市隧道工程建设和谐度的评价是一个多指标综合评价问题,可以采取层次分析法、模糊数学法等方法进行评价,本文采取层次分析法进行分析。层次分析法的基本思想是将复杂的问题分解为若干个层次,在比原来系统简单很多的层次上逐步分析。通过比较若干因素对同一目标的影响,把决策者的主观判断用数量的形式表达和处理,从而确定它在目标中的比重。层次分析法的主要流程为:明确问题建立层次结构模型利用成对比较法构造判断矩阵进行层次排序,获得权向量进行一致性检验完成层次总排序以及一致性检验获得最优系统方案。
3.1递阶层次模型的构建
根据层次分析法理论,构建四个层阶的递阶层次模型分析模型。城市隧道工程建设的综合和谐度为第一阶(最终目标层H),并将其分为技术(HT)、经济(HC)、社会(HS)和环境(HN)四个二阶目标层。第三层为指标层,共包括12个方面的准则(T1~C9),即安全管理指标、质量管理指标、进度管理指标、业主经济指标、施工经济指标、员工经济指标、外联关系指标、机构关系指标、员工关系指标、资源消耗指标、污染控制指标、扰民控制指标。指标层为影响城市隧道工程建设和谐度的15种影响因素(C1~C15)。
3.2指标层权重的确定
应用层次分析法确定指标权重的方法为:利用分级比较标度方法,列出上层指标与下层相关性,由被调查者采取两两比较的方法,给出判断矩阵。然后求出判断矩阵的特征向量和特征值,进行一致性检验。
3.3和谐度等级的确定
根据和谐度的评价值,按照表1确定其评价等级。具体实施时,可以由政府或其他主管单位研究提出对工程最后的和谐度指标和等级要求进行明确,确定经济和行政奖惩方案,形成有据可查的文件。或由建设单位在施工招标和合同谈判中对工程最后的和谐度指标和等级要求进行明确(此时需要修正一些与施工单位无关的指标),确定经济和行政奖惩方案,作为合同条款的一部分。
4某城市隧道和谐度评价实例
1)工程概况。
某城市隧道全长1823m(左线913m,右线910m),隧道进出口位于不设超高的大曲线半径上,左右设计线相距约30m~50m,属于间距较小的分离式隧道。隧道按城市Ⅱ级快速干道设计;双向四车道,单向行车,设非机动车道及人行道;设计时速40km/h,设计荷载:公路—Ⅰ级;隧道净宽14.50m,净高5.0m。
2)指标权重的调查分析。
为确定城市隧道工程建设和谐度的指标权重,邀请上级主管单位和全体参建单位对和谐城市隧道建设工作进行了分析。与会25位代表(上级主管单位6名,业主6名,施工单位6名,监理和设计单位各3名,监测检测单位1名)参加了各因素重要程度的调查。与会人员分别填写了各层指标重要性调查表,其中准则层与措施层的关系采取开放形式,即每一个准则元素与哪些措施元素相关,由被调查者自己确定,在数据分析时,最多计入6种排位靠前的因素。通过对上述调查进行分析,得到了各指标对总目标的权重。
3)和谐度评价。
该隧道建设完成之后,项目建设单位对各方面工作进行总结,召开和谐隧道建设总结评估会议。上级管理单位、参与建设单位、周边企业和市民代表等35人参与了总结评估。根据和谐度与和谐度等级的对应关系,该隧道工程建设评定为“和谐”。
1.2钢筋施工放样现场用全站仪五点定位法定出钢筋的位置,即:以衬砌圆心为原点建立平面坐标系,通过控制拱部台车模板中心点、拱部衬砌台车外模板同边墙部模板的两个交接点、两墙部模板的底脚点来控制钢筋的位置。
1.3仰拱钢筋的施工仰拱钢筋在模筑混凝土浇筑完毕之后进行。边墙上埋设定位钢筋,仰拱底部利用定位钢筋与环向、横向钢筋可靠焊接,环向钢筋要求接头错开1m以上。
1.4拱部衬砌钢筋施工为确保二衬钢筋定位准确,钢筋保护层厚度符合要求。具体做法:(1)先由测量人员放样定出台车范围内前后两根钢筋的中心点,确定好法线方向,钢筋绑扎的垂直度采用三点吊垂球的方法确定。(2)测量调平层上定位钢筋中心点标高,定出圆心位置(自制三角架如图2所示)。(3)圆心确定后,检验定位钢筋的尺寸是否满足设计要求,全部符合要求后再固定钢筋。(4)定位钢筋固定好后,在支撑杆上标出环向主筋布设位置,在定位钢筋上标出纵向分布筋安装位置,然后开始绑扎此范围内的钢筋,各钢筋交叉处均应绑扎,钢筋接头采用双面焊接,搭接长度不小于5d。为了使二衬结构满足设计的耐久性和安全性要求,二衬钢筋保护层厚度偏差必须满足要求。该隧道二衬设计厚度有40cm、45cm、60cm三种,为提高隧道二衬混凝土钢筋保护层厚度质量,特制订以下施工措施。(1)提高隧道开挖质量,严格控制欠挖,开挖轮廓圆顺,保证开挖断面符合设计要求。(2)仰拱钢筋的加工及安装:加工前根据设计图纸计算钢筋下料长度;安装前时测量仰拱开挖后基坑尺寸,有不满足图纸的地方人工进行修整,铺设时,外层钢筋放在5cm厚高标号砂浆垫块上,其间距<1m,呈梅花形布置,外层钢筋铺设好后,根据设计钢筋层厚度加工焊接架立筋,并拉线进行控制内层钢筋铺设位置。仰拱钢筋铺设好后,全面检查层厚,保证预留钢筋的位置符合图纸要求。(3)拱墙二衬施工前对初支凹凸不平的地方进行修整,直到断面符合图纸要求方可进行钢筋安装。(4)拱墙二衬钢筋加工及安装:加工前根据设计图纸进行下料,加工好后在特制弯曲机上进行弯曲,钢筋堆放时按编号分开堆放,以免使用时混淆;安装时先安装外层钢筋和仰拱预留钢筋进行搭接时焊接牢固,在外层钢筋和防水层之间放置5cm厚高标号砂浆垫块,其间距≯1m,呈梅花形布置。外层钢筋铺设好后,沿轮廓线每隔2m焊定位筋,根据设计钢筋层厚预先加工好定位筋,并拉线进行控制内层钢筋铺设位置,铺设好外层钢筋后,绑扎5cm厚高标号砂浆垫块,其间距≯1m,呈梅花形布置。(5)模板台车定位:钢筋及预留预埋件安装好后,对钢筋层厚进行全面检查,有不够的地方及时调整。(6)混凝土浇筑:加强对现场工人技术交底,在用振捣棒振捣过程中尽量避免接触钢筋,以防止钢筋错位。(7)钢筋安装实测项目偏差须满足下列要求。
2衬砌台车及模板安装
[5]衬砌台车采用厂制轨行式钢结构定型大模板台车,主门架尺寸构造须便于出渣车辆的出入,台车长度为9m。在衬砌台车端头,用木槽制作挡头板,在挡头板上要设置固定止水带和止水条的设施。台车由专业台车机械厂制作好后运至现场安装:(1)二衬台车在隧道洞口平整的场地上组装,试拼消除潜在的不平整和错台,台车模板安装牢固,接缝严密,确保不漏浆,浇筑中不变形、不位移;(2)安装完成后对液压系统和各设备行程及能力等进行严格的调试检验,确保满足施工需要,边墙与拱部模板应预留混凝土灌注及振捣孔口;(3)调试结束以后,对调试过程中发现的问题逐一进行解决,使之能达到设计要求及满足施工需要,对受力大、易对台车稳固性造成影响的地方及时进行补焊加强;(4)调试加固以后,对照图纸,认真核对量测,对台车中心线、模板的平整度、模板接口的联接、弧形模板的开合、液压系统的开启与关闭及工作行程等关键部位、关键项目进行认真检核,确保台车结构、材料、整体安装质量和细部处理满足要求,验收合格再投入使用。同时,在使用过程中加强维护,确保二次衬砌质量。铺设防水层:铺设防水层前,对喷射混凝土表面凹凸显著部位应分层喷射找平,外露的锚杆头及钢筋网应齐根切除,并用水泥砂浆抹平,使混凝土表面平顺。台车就位:台车轨道采用60cm×20cm×16cm枕木、间距为45cm,钢轨采用43kg/m,轨道中心与隧道中心线允许偏差≯3cm,左右轨允许高差≯2cm。走形轨面的高程应符合规范要求。台车就位后,要校正模板外轮廓与设计净空相吻合并锁定台车。校正模板外轮廓时,应注意复核台车中线是否与隧道中线重合,台车拱顶高程是否考虑预留沉落量(该隧道二衬台车拱部模板预留沉落量为10~30mm、其高程允许偏差为设计高程加预留沉落量(+10mm,0mm)),矮边墙与拱墙混凝土接茬处的隧道净宽是否符合设计要求,并且调整模板中心线尽量同台车大梁中心重合,使台车在混凝土灌注过程中处于良好的受力状态。
3二衬混凝土施工
[6]为确保洞身混凝土质量,二衬混凝土采用衬砌台车全断面浇筑成型,其混凝土采用自拌混凝土,输送方式采用混凝土罐车及混凝土输送泵泵送入模。附着式振捣器配插入式振捣棒捣固,衬砌循环长度为9m。为解决铺底施工与出碴的干扰,分左右侧两次浇筑铺底混凝土,铺底混凝土达到70%强度后方能通过施工车辆。
3.1混凝土的拌制与运输(1)严格控制原材料进场质量,做到每种材料必检,检测频率和质量必须满足要求。(2)严格控制混凝土配合比设计:在试验监理工程师、中心试验室的具体指导下,由工地试验室按有关技术规范进行计算和试验,完成配合比设计,并在施工过程中经常检查。(3)拌合站原材料计量的控制:施工前,拌合站的电子计量装置经过了计量部门的核准和标定,并进行了计量测试(即试拌),确保计量精度。(4)严格控制混凝土坍落度:坍落度控制在墙体100~150mm,拱部160~180mm,在拌合地点和浇筑现场均进行坍落度检测,不符合要求时,及时调整配合比。(5)混凝土的运输采用混凝土混凝土罐车。运输要点:ⅰ)混凝土在运输中应保持其匀质性,做到不分层、不离析、不漏浆。运到灌注点时,要满足坍落度的要求;ⅱ)混凝土罐车使用前清除容器内的残渣及湿润,装料要适当,防止过满溢出;ⅲ)从搅拌机卸出到浇灌完毕的延续时间不超过2h;ⅳ)运输道路保持平坦,以免造成混凝土分层离析,并根据浇灌结构情况,合理调度车辆,保持道路畅通。
3.2混凝土的浇筑与振捣二衬混凝土采用混凝土输送泵、输送管,末端采用软管连接入模,混凝土入模的自由倾落高度保证其不发生离析,现场施工中不超过2m。输送管严禁接触模板,以免混凝土压出时对管口产生的强烈冲击使模板发生小位移及局部变形;防止振捣器直接冲击防水层、钢筋、模板和预埋件,以免造成防水层、模板损坏和钢筋、预埋件位移。衬砌混凝土在浇筑时,为防止台车偏移,应从两侧拱脚向拱顶对称分层浇筑,并加强钢边橡胶止水带处混凝土捣固,两侧灌筑高差最大不超过100cm,且需连续灌注,灌注速度不宜太快,以10m3/h为宜,若必须终止则不应超过混凝土初凝时间,否则应作施工缝处理,衬砌不留施工平缝,纵向工作缝都必须竖直,相邻段浇筑时,先对已浇混凝土端头凿毛冲洗干净后再浇筑混凝土。变形缝及垂直施工缝端头模板应支立垂直、牢固。混凝土灌注至墙拱交界处,应间歇1~1.5h后方可继续灌注;边墙及墙顶部分采用插入式振捣器振捣,拱顶部分采用附着式振捣器振捣。采用插入式振捣器振捣时,分层厚度30cm,振捣时间宜为10~30s。拱顶部分振捣时附着式振捣器应单个启动,使用时,应根据需振捣的部位开启振捣器振动约30~50s。混凝土振捣应确保密实。插入式振捣棒需变换其在混凝土中的位置时,应竖向缓慢拔出,不得用插入式振捣棒平拖以驱赶下料口处堆积的拌合物振捣,待混凝土充分下沉后再浇筑拱部,以防因边墙混凝土下沉而造成拱部开裂。
3.3封顶(1)当拱部混凝土浇筑至台车最上层窗口时,应将泵送管接至拱顶圆形进浆口。从圆形进浆口泵送混凝土进入衬砌台车时,应从已衬砌段向末衬砌段进行,混凝土充填满拱部后继续泵送混凝土,直到混凝土浇筑至台车挡头约2m处。(2)在台车拱部挡头处预留环向长约2m的空间,先不安设挡头板,以便进行封顶作业。当混凝土浇筑至台车挡头约2m处时,将泵送管接至台车挡头处,通过软管从未安设挡头板处向拱顶浇筑混凝土:将软管出口端设置于模板上预封顶处,待输送出的混凝土充满封顶部分并将软管埋入混凝土约30cm时,将软管拔出约40cm,振捣后连续输送混凝土。待其埋入约30cm后,再拔出一次并振捣,直至混凝土浇筑至台车挡头。(3)当混凝土处浇筑至台车挡头时,一边安设挡头板,一边浇筑混凝土,并采用插入式振捣棒振捣密实,直至封顶完毕。(4)为保证拱部混凝土的密实性,在拱部预埋Φ20mm压浆管,待衬砌混凝土强度达到设计强度的70%后再进行压浆处理。
3.4拆模该隧道二衬是在初期支护变形稳定后施作的,承重模板拆除时,二衬混凝土强度须达到20.0MPa时以上;拆除非承重模板时,按施工规范采用最后一盘封顶混凝土试件现场抗压达到的强度来控制拆模,混凝土强度不得低于5MPa,并应保证其表面及棱角不受损伤。
3.5混凝土养护[7]拆模前用水冲洗模板外表面,拆模后用水喷淋混凝土表面,以降低水化热。(1)应在浇筑完毕后的12h以内对混凝土保湿养护;(2)混凝土浇水养护的时间:养护期不少于14d;(3)浇水次数应能保证混凝土处于湿润状态;(4)混凝土强度达到5MPa前,不得拆除堵头模板;(5)衬砌混凝土实测项目偏差须满足下列要求。
4二衬施工注意事项
(1)检查接缝模板、堵头板是否安装牢固,检查灌注部位的作业窗是否关闭,检查输送管接头是否牢靠。(2)灌注混凝土前,必须用水将基底冲洗干净,灌注时必须两侧同时进行,否则造成偏压导致跑模,灌注部位的作业窗两侧必须用销子插上。(3)混凝土材料的选用、配合、搅拌、运输、灌注、振捣等要求按混凝土施工技术规则进行。
5保证衬砌背部密实的措施
(1)加强光面爆破控制,提高围岩基面平整度。(2)严格施工过程控制,对初支平整度不满足要求的不予验收,直至补喷合格后才允许进入下一道工序的施工,确保初支基面平整。(3)加强防水板铺设质量控制,特别是防水板固定后的松紧度控制,预防太紧防水板崩裂,太松形成褶皱导致空洞的出现。(4)加强二衬混凝土浇筑过程的振捣质量。(5)加强各工序作业人员的质量意识和责任心,把好每道工序质量。
1.1排水过程不具顺畅性
对于隧道的设计施工,将新奥法原理理论作为参考依据,在设计过程中,把隧道周边岩体渗水经过衬砌之后的倒水设备,进一步往集水沟引入,继尔往隧道排除。如果存在某些排水设备系统不能够正常运行,将水往隧道排出,便会基于衬砌后期形成难以解决的集水现象。在此位置的水充满空隙的状况下,衬砌会受到和地下水位高度相同静水的压力,而并不是基于设计当中的无水压,也不是折减水压。同时,在渗流的动水压力的影响下,衬砌承受的压力会在在很大程度上高于此前设计标准,进而造成衬砌涌水开裂的破损情况。因为隧道铺地基面长期浸泡在积水当中,到列车动力的催动之下,便会引发底部吊空现象,列车经过时产生呼吸作用把碎石排空,也把砂子排空,知识行车产生限速,并且会引发断轨等诸多情况。在排水系统不够顺畅的情况下,便会进一步造成雨季积水等不良状况。
1.2防水设施劣质
在隧道和外部水环境之间,防水层是极其重要的部件,能够在隧道与外部水环境分隔中发挥重要作用。基于隧道工程当中,具备两种防水层:其一是柔性防水层;其二为刚性防水层。对于柔性防水层来说,其效果与材质及施工质量存在很大的联系。若防水材料劣质,没有足够的耐久性,便非常容易在运营一段时间后,将防水能力丧失。对于刚性防水层,由于它的功能和混凝土的性能之间具备一定的联系性,如果防水混凝土的衬砌施工质量比较差,在收缩大的作用下便会呈现孔隙及裂缝等一系列情况,进而使得防水层的防水能力大大降低。
2隧道工程影响作用分析
2.1案例分析
隧道工程在建设过程中,也会对水环境构成极大的影响。隧道工程将地下水渗流原有拥有的平衡破坏,在长期疏干的作用之下,使渗流场产生了极大的变化,进而对地下水正常循环造成了非常大的影响,最后恶化了自然生态环境。以某隧道工程作为案例,该隧道工程全长为15.365千米,洞顶埋深为100米~910米,洞中部属于斑古坳地区,地表面植被非常茂密,年平均气温维持在20摄氏度,年均降雨量为1500mm。此隧道的主要问题是渗漏水现象严重,通过多次整治之后,问题仍旧没有得到有效解决。在长期排水的作用下,致使地下水位呈现下降的现象,井水干涸,并且正常的农业灌溉也受到了非常大的影响。另外,因为地面沉降致使房屋产生变形及开裂情况,使当地农业及生活均无法正常开展,该地区居民只能外迁,从而损失了很大一笔经济费用。对于此隧道工程,对地下水环境的主要影响包括两方面的内容:一方面为疏干地下水;另一方面为渗流场变化使岩土应力发生变化。
2.2疏干地下水造成自然环境灾害最主要的原因
为隧道长期排水。隧道挖掘之后,把水循环系统破坏,例如知识地下水资源被很大程度的流失。在隧道积水与汇水的作用下,使形成地下水运动的方向发生较为的改变。在长期排水的情况下,位于隧道中的地下水系统渐渐将地下水排出。将有关理论当作参考标准,地下水的补给量不能让其排水量得到充分满足,于是其水位便会发生持续下降的现象。在地下水位慢慢减弱的状况下,地下水和地表水径流间都会产生一定程度的变化,以直接的方式导致岩溶泉发生出水量极少的情况。与此同时,也可能造成地表的取水井水位下降及水井干涸等现象,进一步知识居民生活用水尤为匮乏。另外,地下水位下降会知识原农田土壤的含水量大大减退,尤其对水稻区域的影响更为严峻,可能引发无法继续种植的情况,最终对农业的正常运作产生了非常大的影响。
2.3渗流场变化使岩土应力发生变化
首先,由于隧道让许多地下水疏干,进一步让水位产生下降情况,而饱和岩土层当中空隙的水压力则会呈现减弱的趋势,不饱和区域负水压力区变大,在总应力不发生变化的状况之下,有效的应力便会得到进一步的上升。其次,应渗流场发生明显改变,地下水渗流的方向也会随着发生改变,变成在新水力梯度的状况下,便可能朝着隧道中心发生流动,此时方向为向下方向。另外,应渗流方向发生明显变化,地下水的渗流力也会随之发生变化,从而让竖直向下应力加大,最终导致总应力提升。在此状况下,岩土便会产生新的沉降,直至达到新的动态平衡状态为止。土体沉陷则会让隧址区的房屋产生倾斜现象,也会产生开裂现象,进而导致不能继续应用,在土体沉陷对农田造成严重影响的状况之下,便在很大程度上增加了农业耕种的难度。
在黄土隧道施工过程中,会出现沿着隧道走向在隧道两侧出现地表裂缝,且裂缝会随着隧道开挖进度相应发展,一般情况下裂缝是由拱脚处以黄土内摩擦角度沿仰坡延伸至上方地表,随着施工进度,山体裂缝最终连在一起。
1.2塌陷
由于施工过程中的冒顶、拱顶下沉等原因,往往会引起局部的地表连续性下沉,慢慢发展成为地表塌陷,当地表塌陷变形较大时,还会伴随着产生一系列的环状裂缝。
1.3陷穴、落水洞
其主要成因是隧道施工过程中的地表裂缝以及冒顶、拱顶作用形成的上部土体塌空,致使隧道顶部的降雨或者是其他农业灌溉用水下渗,最终在地表产生陷穴和落水洞。
2湿陷性黄土隧道的基底处理原则
从湿陷性黄土隧道的工程特性以及以往的湿陷性黄土地区地基处理经验来看,湿陷性黄土隧道基底处理应遵循“内外加固、先保护后加固”的原则。由于水是造成黄土湿陷性变形的最主要因素,所以在设计湿陷性黄土隧道地基处理方案时,应首先要考虑水对湿陷性黄土以及整个隧道工程的影响,做好湿陷性黄土隧道工程的排水与防水工作。对于黄土隧道工程来说,进行基底处理的目的无非就是改善黄土的工程特性,减少其土壤的渗透性,控制湿陷作用的发生。所以往往通过换土或者加密等手段进行湿陷性黄土隧道工程基底加固处理,使处理后的基底不具有湿陷性或者消除部分湿陷,使其数值不超过规定范围。
3湿陷性黄土隧道工程的基底处理方法
对于湿陷性黄土地基处理而言,目前国内已有较为成熟的技术方法和隧道工程实践经验,其主要的处理方法有:碾压、强夯、换填、动力挤密桩、高压灌浆、高压旋喷桩等,其中常用的基底处理方法有以下两种:
(1)水泥挤密桩。这是湿陷性黄土隧道工程中较为常用的一种基底处理方法,由于湿陷性黄土本身具有大孔隙性和湿陷性,水泥挤密桩就是通过对其大孔隙进行夯实挤密,从而消除湿陷性并对基底产生加固作用。在桩锤的夯实过程中,桩孔中原有土被强制性的侧向挤出,桩周范围内的土质被压缩和重塑。但是由于湿陷性黄土隧道工程隧道内施工作业面相对较小,振动作用对围岩产生的影响等,需要湿陷性黄土隧道从工程中的挤密桩装身材料以及挤密桩施工机械和桩间距等做出优化处理。
(2)树根桩。所谓的树根桩,其实是一种小型钻孔灌注桩,是通过利用钻机钻孔到一定的深度,随后放入钢筋笼、碎石和注浆管,再通过压力灌注水泥或砂浆的方式制成的钢筋混凝土桩。由于其布桩方式多采用垂直、倾斜设置或者树根桩布置,被成为树根桩。凭借着其高承载力、沉降量与扰动范围小、施工操作方便和经济快捷等特点,在湿陷性黄土隧道工程基底处理中得到了初步的应用,能在有效的空间内最大限度上的减少开挖过程中对隧道洞身地层的扰动。
4黄土隧道基底处理的新技术
就黄土湿陷性的内外部成因来讲,其主要内因是由于黄土自身的土质和结构组成,外因主要是由于水的侵蚀作用的外部载荷。由于黄土本身是在干旱和半干旱气候条件下形成的,其土质本身有欠压密性,加上其和盐类胶结材料的易溶性,致使黄土具有湿陷性。所以对于湿陷性黄土地基的处理应本着力消除其内应,处理方法有以下几类:
(1)土体加密法。主要指通过各种工程施工措施,加大黄土的密实度,通常可以采用强夯法和素土垫层法。
2喷锚支护技术在隧道工程中的应用
2.1准备工作
2.1.1确定喷射混凝土原料的比例
确定喷射混凝土各项原料的比例时,不仅需要达到设计要求的强度等级,还需要充分考虑当地的气候环境及地质条件,应保障混凝土的抗渗性及早强性达到相应的要求,避免出现混凝土的抗冻性不佳的情况,并降低回弹率及水化热,低温早强喷射混凝土的水灰比需要控制在0.4~0.5之间。一般情况下,每立方米所使用的水泥量保持在400~470之间。进过反复的实验,该隧道工程中的喷射混凝土施工使用的低温早强喷射混凝土,其成分中的水泥、砂和碎石的比例确定为1∶2.35∶1.61。
2.1.2喷射混凝土原料配合比
混凝土的原材料包括水泥、细骨料及粗骨料及外加剂。在材料的等级、性质、强度、质量等方面均需要达到相应的技术指标,具体情况如下:①水泥材料。水泥材料的等级需要超过32.5R,且是低碱普通硅酸盐水泥或者硅酸盐水泥。该项工程中更使用的是32.5R级普通硅酸盐水泥,其主要技术指标有细度小于4.1%,标准稠度用水量为26.5%,安定性合格,初凝时间为1.5小时,终凝时间为3.5小时,标准情况下抗折强度为8.3,抗压强度为45.2;②细骨料和粗骨料。细骨料需要使用非碱活性的河砂,并要求其硬度较大,没有易冻裂或者容易受到气候影响的矿物质,较为清洁,级配良好,而粗骨料则需要选择非碱活性的碎石或者卵石混合物,要求其级配良好没有冻结物,如冰雪等,其主要的技术指标中含泥量为0.6%,泥块含量为0,坚固性为2.1%,压碎指标为5.1%至7.6%之间,没有碱活性;③外加剂。根据低温早强喷射混凝土的性质,该项速隧道工程开始使用的外加剂是多功能复合外加剂与速凝剂的联合,多功能复合外加剂前能够有效的降低混凝土在液相状态的冰点,使得喷射混凝土的早期强度得到优化,有效的对抗各种恶劣的气候环境;速凝剂则能够让混凝土的硬化速度加快,减少回弹的损失,使得混凝土能够适应含水量较大或者较为潮湿的岩层。
2.2施工过程分析该工程的特点后
施工方法选择为上下断面台阶法,初期支护使用的是锚杆挂网、喷射沪混凝土、钢格栅等多种方式有机结合,主要施工过程如下所述。
2.2.1清理开挖面
围岩隧道掌子面出现完全的出渣现象后既可以对其实施净空量测,做好测量标志,并将不稳定的岩石等进行清理排除,并做好欠挖处理。需要注意在欠挖处理过程中,如果存在软弱地段,需要选择人工开挖的方式,而硬度较高的地段则可以使用补炮来进行开挖,使得其净空尺寸达到设计要求。
2.2.2喷射混凝土
进行混凝土喷射之前,先使用水冲洗岩壁表面,清除杂物及粉尘,搅拌机将粗细骨料、水泥材料搅拌均匀,再根据配比添加质量合格的水,数量需要保持在总量的20%左右,按照正常的程序进行搅拌,并加入速凝剂,使用剂量需要保持在水泥重量的5%左右。该工程中所使用的混凝土喷射机,压力为0.2~0.4MPa,首次喷射混凝土时,一般选择的方式,能够有效的避免洞内粉尘污染。在喷射过程中,需要将喷射面分为若干个片或者小段,每段额的长度为5cm左右;喷头需要呈螺旋形,和喷面之间的距离应为0.5cm~1.0cm,喷射方向和岩面产生的夹角需要保持在10°以内,喷射厚度一般为3cm左右。
2.2.3设置锚杆及配套材料设置
锚杆之前,需要先加工相应的材料进,对成型的F22螺纹钢进行切割;所使用的锚固剂的为8604型水泥锚固剂,其固化时间需要保持在5~10min之间,强度为52~56MPa。现在开挖面进行钻孔施工,使用高压风将孔内的杂物清理干净,锚固剂沾水湿润,并将其置入孔内,填充到孔深度的2/3,在使用手风枪把锚杆植入孔内,固定住,主要保障锚杆和锚固剂贴合的紧密度。钢筋网片的规格为100cm×200cm,网片和锚杆牢固的焊接在一起,铺设钢筋网的过程中需要结合喷面的形状来进行,注意钢筋网和喷面之间的缝隙应保持在3cm以内。格栅也属于该配套的材料,其主要材料是F25钢筋,数量一把为5根,牢固的焊接起来,尺寸一般为500cm,使用钢板螺栓将格栅连接在一起。铺设格栅时,其间距保持在100cm左右,连接筋的长度一般是为110cm,且需要个5根主筋焊接在一起,焊接方式为点焊。最后在格栅格栅拱脚架上安装垫板,需要隧道中线保持垂直,其水平位置应比导坑地面低25cm左右。
在建立大桥控制网时,采用桥梁轴线建立坐标系对所应用的GPS技术进行处理。在桥梁主轴线上,联测或假定一个控制点,并且以轴作为GPS控制网方位基准,由高精度测距仪测量主轴线两端控制点间长度确定网尺度基准。在主桥高程面上选择GPS桥梁控制网投影面。
1.2GPS在隧道控制测量中的应用
在布设GPS隧道控制网时,通常采用隧道工程坐标系。在布设隧道工程坐标系的过程中,其原点一般选择隧道洞口控制点,并且在方向上要求X轴指向与线路前进方向一致,同时通过正交的方式,使得Y轴与X轴构成右手系。在对GPS隧道控制网网点进行选择埋设时,需要考虑GPS测量对点位的要求,以及隧道施工的要求。
2GPS高程拟合精度评定指标
为了对GPS高程拟合精度进行客观的评论,需要对所有的GPS点进行水准联测,在全网上均匀分布起算点,选择其他点作为检核点。在内符合精度方面,根据参与拟合计算已知点高程异常与拟合出高程异常求拟合残差;在外符合精度方面,根据检核点高程异常与拟合出高程异常间差值,计算GPS高程拟合的外符合精度M;GPS水准精度评定,根据检核点与已知点距离L计算检核点拟合残差限值评定GPS拟合高程达到的精度。
3数据介绍隧道主要应用
GPS进行控制网布设进行高程传递。对于控制点来说,由于需要进行拟合处理,在这种情况下需要的数据比较少。以某一桥梁为例,采用20个公共点对三次样条模型和移动曲面进行拟合分析,根据需要数据前四位省略,在数据类别方面,根据GPS高程拟合原理,可以将其分为起算数据、检核数据。其中,起算数据中的点一方面包含大地高,另一方面包含正常高,同时以此为计算拟合模型中的参数。检核数据是已知大地高,高程异常通过应用拟合模型进行计算,进一步获得正常高。本文中将11个数据点作为起算数据,9个数据点作为检核数据,具体分配方案为起算数据13个,分别为1、3、5、6、7、9、11、14、16、18、20点,检核数据9个,分别为2、4、8、10、12、13、15、17、19。
4数据解算结果及分析
分别对三次样条拟合和移动曲面拟合两种模型根据分配好方案进行数据拟合,三次样条拟合法比移动曲面拟合法效果更好一些,两种方法得到拟合结果值与已知各点高程异常值关系。当多跨桥梁长度、隧道长度分别小于3000m、6000m时,通过移动曲面拟合法可以满足精度要求。对于三次样条曲线拟合,在应用过程中,需要注意X分量、Y分量对拟合结果产生的影响,在某些情况下,三次样条拟合出高程异常面会出现失真现象。对于多跨桥梁、隧道来说,当其长度分别超过3000m、6000m时,在这种情况下,通过移动曲面拟合法获取高程数据,在精度方面早已不能满足要求。对测区内一块宽1000m,长5000m区域采用三次样条拟合法和移动曲面拟合法进行高程异常拟合,通过对比分析两种拟合方法所得结果及拟合图形,同时结合三次样条和移动曲面拟合原理,可知三次样条拟合法存在一定的局限性,三次样条法拟合法与X分量或者Y分量密切相关,拟合结果受X分量、Y分量的影响,进而影响拟合结果的可靠性。
①微差爆破
微差爆破就是利用毫秒延时雷管达到延时爆破的爆破技术。它的主要优点就是可以降低爆破地震效益所导致的冲击作用;实现岩石碎块的均匀度,使得爆破岩石碎片集中化,便于清理;降低爆破次数、提高爆破效果。
②挤压爆破
挤压爆破技术就是在爆区自由面前方人为预留岩渣,以此提高炸药能量的利用率和改变破碎质量。它的主要优点就是增加了工时的利用率,降低了爆破频率;通过挤压爆破可以使岩石在挤压过程中发生二次冲击,提高了岩石破碎率,降低了二次爆破的工作量。
③光面爆破
就是在开挖的岩石中保证其表面光滑而且不受明显破坏的爆破技术。光面爆破技术可以有效的保护开挖岩体的稳定性,降低施工成本。光面爆破的原理就是采取在开挖岩体表面布置密集的小直径炮眼,在这些炮眼中不耦合装药或者部分孔不装,同时起爆形成平整的光面。
④预裂爆破
就是人为开挖制造一条裂缝,这条裂缝是保留围岩与爆区的分裂线,有效的保护围岩,降低爆破地震危害的控制爆破技术。预裂爆破的炮孔直径一般越小,孔痕率就会越高,对爆破的效果就会产生巨大的影响。
2隧道控制爆破技术
为了更加准确地说明隧道控制爆破技术,本文选用“高石河隧道施工”实例对隧道控制爆破技术进行综合分析:
2.1高石河隧道爆破施工方案
高石河隧道工程以娟云母千枚岩为主,千枚岩遇水后会迅速的软化,而且其地形非常复杂,经过多方论证,最后采取地表注浆加固形式对滑坡进行处理后进行进洞施工。基于高石河隧道地形比较复杂,隧道开挖面积要达到110m2,因此根据施工现场的环境以及施工设备可以采取上、下台阶法开挖,选择2#的岩石乳化炸药,钻孔的直径为42mm,采取并联分段毫秒导爆管。上断面开挖44m2,下断面开挖56m2,它们都采取水平炮孔开挖方式。
2.2爆破参数的确定
根据以往的工作经验以及爆破原理,本工程沟槽采取楔形沟槽法,炮孔则采取掏槽眼、辅助眼、周边眼等多种布孔的方式,并且利用不同段别的毫秒雷管实现对光面控制爆破。
2.2.1炮孔的数量以及炮孔直径
根据工程的实际环境以及岩石的坚硬程度,并且结合爆破技术的原理,来确定在工程的掌子面确定炮孔的数量,一般我们在确定炮孔数量时选择的公式是:N=3.3(f•s2)13根据公式我们可以准确的计算出该工程的炮孔数量应该为160个,其中:N———炮孔的数量(个);s———掘进断面积(m2);f———岩石坚固性系数。
2.2.2装药量的计算及分配
装药量的多少对爆破效果会产生重要的影响,药量不足与过多都会影响工程的质量,因此要合理的确定具体的装药容量,合理的药量要根据炸药的性能和质量等多方面进行确定,但是由于施工环境具有很多的不可计算的因素,因此我们在确定炸药容量时多根据以下公式进行计算:Q=qV。在公式中:Q———爆破循环需要的炸药量;q———爆破每立方米所需要的炸药的消耗量(kg/m3);V———一个循环近尺所爆落岩石的总体积,即V=IS,m3。
2.2.3炮眼直径对工程的影响
众所周知,增加炮眼的直径,加大装药量可以使爆破的威力更大,可以使爆破的效果发挥到最大程度,但是如果一味的增加炮眼的直径就会造成凿岩的下降速度,并且对岩石的碎片质量以及围岩的平整度产生巨大的负面影响,比如增加炮眼的直径可能就会增加爆破的瞬间威力,但是岩石的碎片破碎程度就会下降,碎片的均匀程度也会出现巨大的反差,因此在设定炮眼时必须要根据施工环境以及施工设备、炸药的性能等综合因素进行分析,科学的确定炮眼的孔径。根据我们的工作经验,再结合本工程的实际情况,我们将炮眼的直径确定为32mm-50mm之间,药卷与眼壁之间的间隙为炮眼直径的10%左右,基于此要求,上下断面的开挖爆破应该选用钻头为38mm的风动凿岩机。
2.3爆破施工设计
2.3.1上台阶施工设计
①炮眼布置
炮眼的布置要严格按照控制爆破震动原理进行布置,首先从距底板的50cm处开始,沿隧道的中心线两侧对称布置4对垂直楔形掏槽孔,它们的排列顺序是:头排的辅助孔与掏槽孔的距离要保持40cm,中间辅助孔的距离也为40cm,最外排的辅助孔与边墙的距离为85cm左右;在隧道的拱部布置4排崩落孔,他们之间的排距为60cm,最外层的崩落孔与隧道边界要保持65-80cm的相距距离;周边的炮孔要与开挖边界保持20cm,并且炮孔钻眼要向外倾斜5°左右,底板孔直接布置在底部边界上,并且向下倾斜10°左右进行钻孔,并且要保持孔距之间达到85cm。
②装药结构与单孔装药量的确定
在确定好炮眼的数量以及大小位置后,就需要根据具体的工程要求科学的对炸药使用量进行确定,一般根据工程建设经验,除了在周围孔选择轴向间隔装药外,其余的炮孔需要采取连续装药的结构,不同的位置选择的炸药是不相同的,在拱部周围孔之间要采取直径为25mm、长20cm、重100g的卷装乳化炸药;底板孔则使用直径为32mm、长20cm、重200g的乳化炸药;其余的则选用直径为32mm、长20cm、重150g的卷状2#岩石炸药。
③起爆顺序与方法
为了降低施工成本,实现爆破的预期效果,应该将爆破所引起地表振动的速度控制在2cm/s内,并且要尽量使各个炮孔同时起爆,具体的起爆顺序是:掏槽孔、辅助孔、崩落孔、边墙周边孔、底板孔和拱部孔。起爆的方法是采取非电导爆管以此点火,孔内毫秒延时起爆,采取并联方式连接,主传导爆管用电雷管引爆。
2.3.2下台阶施工设计
①炮孔布置
下断面横截面上应该布置3排主爆孔,其中3个头排爆孔的抵抗线为1.1m,随后再布置2排主爆孔,其间距为0.8m左右,并且要保证每排要布置4个炮孔,孔距的间距为1.0m,同样两侧的边墙也要布置4个周边孔,孔距为0.7m。
②装药结构与单孔装药量
下端面的装药结构与上断面的装药结构是相同的,除了底板孔使用单卷的重量为200g的乳化炸药外,其余都是用单卷为150g的2的岩石炸药。各炮孔的单孔装药量。半台阶炮孔示意图
2地质雷达检测方法与检测技术
隧道后期质量检测应考虑隧洞结构完整性要求,结合隧洞工程检测目的与工程实际情况,检测工作应主要以测绘、裂隙调查等方法配合洞外地表与洞内进行地质雷达探测的综合无损检测技术。在隧道混凝土衬砌施工质量检查过程中,由于其隐蔽性较强,属薄壁结构,施工困难,施工容易造成衬砌混凝土厚度不符合设计要求、衬砌混凝土与岩体结合不密实等质量事故。在后期检测过程中采用常规的检验方法如局部开孔等,其方法效率低下且代表性较差,同时对衬砌混凝土结构的整体性有较大影响。故采用在洞外地表与洞内进行地质雷达探测的综合无损检测技术,可以对隧道衬砌混凝土的结构、裂缝分布及延展进行检测,同时还可对浅部围岩变形进行检测。
探地雷达对地下目标体的探测采用的是高频电磁波,其在地下介质中的传播过程实际是一个褶积滤波过程,由于地下介质的物性和几何性质的不均匀性及地下介质的电性的不均一性,电磁波在地下介质中的传播相当复杂,各种噪声干扰严重,同时,探地雷达在接收地下介质的反射波的同时,也会接收到地面以上的各种噪声和干扰信号。因此,实际接收的探地雷达信号不再是发射信号的简单叠加,附带了一些波形畸变的子波,这些子波都有不同尺度变化使得探地雷达信号具有非平稳性,脉冲信号非线性衰减等特点。探地雷达回波信号不能直接准确清晰地反映目标体,必须经过适当的数据处理,以改善数据质量,为图像判释和地质解释提供清晰的反射波信号。探地雷达数据处理的目的就是压制各种噪声和干扰,提高分辨率,使探地雷达图像剖面上显示最大分辨率的反射波,收集反射波的各种有用参数(包括电磁波速度,振幅和波形资料),以便对探地雷达图像做出准确可靠的地质解释。
3引水隧道衬砌检测方法
引水隧洞质量控制的关键是要控制好开挖及衬砌混凝土的质量。衬砌混凝土施工首先应对原材料、中间产品等的质量进行严格的检测与控制,其次对关键工序的施工质量进行严格的过程控制。对于衬砌混凝土质量的后期检测,根据以上分析,可优先采用以测绘、裂隙调查等方法配合洞外地表与洞内进行地质雷达探测的综合无损检测技术。隧道衬砌探地雷达检测时,应先合理布置测线,测线可能布置在远离电缆线、金属物等,一般采用纵向布线方式,在左右边墙、左右拱腰及拱顶位置布置五条测线,特殊情况下可布置环向测线,以辅助纵向测线检测,初期支护厚度一般较薄,表明不平整,为满足分辨率要求,保证探测数据质量,一般用800MHz屏蔽天线,若800MHz屏蔽天线探测范围不足以覆盖初期支护后的缺陷时需换用500MHz屏蔽天线,对于二次衬砌,由于厚度相对较厚,一般采用500MHz屏蔽天线,初期支护检测和二次衬砌检测均按5m或10m一标记打标。探地雷达检测过程需要注意以下几点:①检测前应全面了解检测任务,充分做好检测前的准备,如根据需要正确设置探测参数等。②严格控制测区内的金属构件或无线电发射源等产生较强电磁波干扰设备。③应选用绝缘材料为探测天线的支撑器材,天线操作人员不应佩带含有金属成分的物件,注意人员和仪器安全。④检测过程中,应保持工作天线的平面与探测面密贴或基本平行,距离相对一致。⑤做好现场记录,记录标记位置,测线范围内是否有障碍物、障碍物的确切位置,准确的测线位置等。
4结论
1)地质雷达应用于浅埋深小断面引水隧道具有极其广阔的前景,地质雷达技术可有效地对隧道混凝土的密实度、与岩体的接触紧密度等进行连续、全面、快速、精确的无损伤检测。
2.新奥法在公路隧道工程中的应用
2.1新奥法基本原理
新奥法是现代公路隧道工程中的一项标志性的新技术,新奥法的原理首先就是了解隧道结构的主要部分,知道围岩是其主要承载结构部分;开挖后要加固围岩,确保围岩不会在开挖卸载后发生原有强度不在的情况;公路隧道围岩时,对围岩的卸载位移的程度要降低;隧道围岩支护工程中可以允许围岩产生小范围的变形,产生受力环区,限制围岩位移程度,避免变形产生松懈;初次支护主要是保持围岩自承状态,避免松弛;适时建造初次支护,选择比较适宜的早晚时间,延迟围岩的变形,让支撑效果达到最佳;围岩要注意对地质条件的检查,评定隧道洞周的位移变形;因为喷射混凝土受力快、与围岩密贴等。
2.2应用新奥法进行隧道围岩的支护
开挖工作进行过程中,隧道围岩的应力开始重新分布,必须加固围岩,使围岩卸载后强度不会失去。结构承载要尽量被满足,当围岩周围出现位移和变形,开挖曲面后,就形成拱模效应,进而形成受力环区,此外,对围岩位移速度要进行控制,防止变形松动。所以,对公路隧道进行支护要采用新奥法支护结构,支护时初期采用锚喷的方式,再次支护时,进行的复合衬砌采用的是模筑混凝土。喷射混凝土、钢筋网喷射混凝土和锚杆共同组成锚喷支护,是一种支护结构。具有速凝剂的混凝土混合料是喷射混凝土的一种材料,将其混合高压水和混凝土喷射机,借用高压空气的作用,直接喷射至岩面,然后凝结成形状。围岩情况的好与坏决定支护使用混凝土的种类,围岩情况好,则支护的主要方式是喷射混凝土,辅助工具是锚杆;如果围岩情况不好,那么支护的主要方式则是锚杆,借用的材料是钢筋网混凝土和喷射混凝土等其他混凝土,结合配合使用。新奥法的喷射支护技术,作为围岩的承载结构的重要组成部分,被应用在公路隧道支护中。所以,二次衬砌支付时,新奥法支护技术是后期的围岩饰面的承载力,要综合评估围岩的变形,评估初期支付和隧道的周边情况。任何支护都需要薄型的柔性结构,使手受弯变形的情况和挠曲断裂的情况减少。新奥法施工技术被应用在公路隧道围岩支护中,值得注意的是公路隧道岩石的软硬问题,使用新奥法施工技术,要区别硬岩隧道和软岩隧道。软岩地层的隧道是接近地表的,很难承受再次荷载,再有就是覆盖土的重力作用大,很难控制其变形,然而在硬岩隧道中如果使用支护时柔性的,风险就是客观存在的,释放过度会导致坍塌。若围岩中浅埋隧道式软弱破碎的,新奥法原理就在这时起作用了,可以控制围岩变形,但是不能采用一次性柔性支护,应该加固地层,高强度的预支护,达到好的自承性能效果。
2.3应用新奥法加强隧道施工监测
作为公路隧道新奥法施工技术核心的公路隧道施工监测,监测是围岩稳定性的保障,确保支护结构的受力状态的稳定,科学合理的确定衬砌时间和支护时间,做出精细的施工设计。所以,开挖公路隧道后首先是及时支付围岩,保证其稳定性,喷射混凝土,加大喷射厚度,添加锚杆和钢筋网;然后是初期结束后加设模板,二次衬砌混凝土。采用新奥法施工技术施工监测,力学计算,融合整个设计、勘察和施工等环节,所以初步调查地质后使用数学计算进行预设计,确定好支护参数,在施工中布置监控测试系统,全面了解支护过程和围岩,通过信息的反馈,确定科学的开挖方案和支护参数。
2.4应用新奥法进行隧道的开挖施工
公路隧道开挖的方法很多。比如掘进机法、矿山法等这些都离不开爆破手段,爆破是利用了岩石抗裂能力低的特点,通过各种措施来减少围岩周边的损坏,达到更加好的效果。爆破还能使开挖受控制,衬砌混凝土量得以节省,施工进度加快,成本降低。利用新奥法施工技术,对公路隧道施工建设来说,不仅要利用爆破避免围岩扰动,还要开挖轮廓线,保护围岩,增强自承能力。