绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇移动通信技术论文范文,希望它们能为您的写作提供参考和启发。
伴随着移动通信市场的快速发展,用户对更高性能的移动通信系统提出了更高要求,希望享受更为丰富和高速的通信业务。第二代移动通信运营商发展速度趋于缓和而竞争越加激烈,为寻找新的增长点,通过发展数据业务来提高自身的服务质量和业务类型,需要3G的支持。同时由于第二代移动通信无线频率资源日趋紧张,已不能满足长期的通信需求发展需要。
1移动通信的发展历程
第一代移动通信系统是在20世纪80年代初提出的,它完成于20世纪90年代初。第一代移动通信系统是基于模拟传输的,其特点是业务量小、质量差、交全性差、没有加密和速度低。
第二代移动通信系统(2G)起源于90年代初期。欧洲电信标准协会在1996年提出了GSMPhase2+,目的在于扩展和改进GSMPhase1及Phase2中原定的业务和性能。它主要包括CMAEL(客户化应用移动网络增强逻辑),SO(支持最佳路由)、立即计费,GSM900/1800双频段工作等内容,也包含了与全速率完全兼容的增强型话音编解码技术,使得话音质量得到了质的改进;半速率编解码器可使GSM系统的容量提高近一倍。在GSMPhase2+阶段中,采用更密集的频率复用、多复用、多重复用结构技术,引入智能天线技术、双频段等技术,有效地克服了随着业务量剧增所引发的GSM系统容量不足的缺陷;自适应语音编码(AMR)技术的应用,极大提高了系统通话质量;GPRS/EDGE技术的引入,使GSM与计算机通信/Internet有机相结合,数据传送速率可达115/384kbit/s,从而使GSM功能得到不断增强,初步具备了支持多媒体业务的能力。尽管2G技术在发展中不断得到完善,但随着用户规模和网络规模的不断扩大,频率资源己接近枯竭,语音质量不能达到用户满意的标准,数据通信速率太低,无法在真正意义上满足移动多媒体业务的需求。
2第三代移动通信系统概述
第三代移动通信业务主要是话音和中低速数据,码率为384kb/s(局域网可达2Mb/s),因而可传送比目前GSM(第二代移动通信)更高码率的信息。随着多媒体业务的发展,2Mb/s的码率将越来越不能满足用户各种新的宽带业务的需要,因此国际上已开始研究第四代移动通信系统,第一步目标是10Mb/s以上。我们国内则尚未启动。因此需尽早开始研究其关键技术。需要解决的关键技术有:宽带多媒体移动通信系统的体系结构,包括频段、多址方法、无线接入技术、软件无线电的硬件和软件、多载波调制和OFDM技术、自适应天线阵、高效信道编码技术(如Turbo码)等。
第三代移动通信系统(3G),也称IMT2000,是正在全力开发的系统,其最基本的特征是智能信号处理技术,智能信号处理单元将成为基本功能模块,支持话音和多媒体数据通信,它可以提供前两代产品不能提供的各种宽带信息业务,例如高速数据、慢速图像与电视图像等。如WCDMA的传输速率在用户静止时最大为2Mbps,在用户高速移动时最大支持144Kbps,所占频带宽度5MHz左右。但是,第三代移动通信系统的通信标准共有WCDMA,CDMA2000和TD-SCDMA三大分支,共同组成一个IMT2000家庭,成员间存在相互兼容的问题,因此已有的移动通信系统不是真正意义上的个人通信和全球通信;再者,3G的频谱利用率还比较低,不能充分地利用宝贵的频谱资源;第三,3G支持的速率还不够高,如单载波只支持最大2Mbps的业务,等等。这些不足点远远不能适应未来移动通信发展的需要,因此寻求一种既能解决现有问题,又能适应未来移动通信的需求的新技术(即新一代移动信:nextgenerationmobilecommunication)是必要的。
第三代移动通信技术的基本特点:(1)全球统一频段,统一标准,全球无缝覆盖和漫游。(2)频谱利用率高。(3)在144kbps(最好能在384kbps)能达到全覆盖和全移动性,还能提供最高速率达2Mbps的多媒体业务。(4)支持高质量话音、分组多媒体业务和多用户速率通信。(5)有按需分配带宽和根据不同业务设置不同服务等级的能力。(6)适应多用户环境,包括室内、室外、快速移动和卫星环境。(7)安全保密性能优良。(8)便于从第二代移动通信向第三代移动通信平滑过渡。(9)可与各种移动通信系统融合,包括蜂窝、无绳电话和卫星移动通信等。(10)终端(手机)结构简单,便于携带,价格较低。
3第四代移动通信系统
4G系统中有两个基本目标:一是实现无线通信全球覆盖;二是提供无缝的高质量无线业务。目前正在构思中的4G通信具有以下特征:(1)网络频谱更宽。要想使4G通信达到100Mbps的传输速率,通信运营商必须在3G网络的基础上进行大幅度的改造,以便使4G网络在通信带宽上比3G网络的带宽高出许多。据研究,每个4G信道将占有100MHz的频谱,相当于W-CDMA3G网络的20倍;(2)通信速度更快。人们研究4G通信的最初目的是为了提高蜂窝电话和其他移动终端访问Internet的速率,因此,4G通信最显著的特征就是它有更快的无线传输速率。据专家估计,第四代移动通信系统的传输速率速率可以达到10M~20Mbps,最高可以达到100Mbps;(3)通信更加灵活。从严格意义上说,4G手机的功能已不能简单划归“电话机”的范畴,因为语音数据的传输只是4G移动电话的功能之一而已。而且4G手机从外观和式样上看将有更惊人的突破,可以想象的是,眼镜、手表、化妆盒、旅游鞋都有可能成为4G终端;(4)智能性更高。第四代移动通信的智能性更高,不仅表现在4G通信的终端设备的设计和操作具有智能化,更重要的是4G手机可以实现许多目前还难以想象的功能;(5)兼容性更平滑。要使4G通信尽快地被人们接收,还应该考虑到让更多的用户在投资最少的情况下较为容易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能跟多种网络互联、终端多样化以及能从3G平稳过渡等特点。
总之,随着新问题、新要求的不断出现,第四代移动通信技术将会相应地调整、完善和进一步发展。纵观移动通信技术的发展规律和第四代通信技术的优点,我们相信,不远的将来,人们将不受时间、地点限制,可以自由自在地利用移动网络获取和传递信息。从而人们的学习、工作、生活将会发生更深刻的变化。
参考文献:
1.1数据流量的增长
产业界人士预测10年以后,移动数据量将达到1000倍。5G的吞吐量能力特别大,就算在很忙的时候也能提升到1000倍,至少可以到达100Gbit/s/km2以上。
1.2联网设备扩大100倍
伴随着智能终端和物联网的迅速发展,预计10年后,联网的设备数目将增加到600~1000达部,在未来里,5G网络单位覆盖面积将大大增加,相比之下是目前4G网络将增长100倍,相对一些特殊的应用,单位面积将通过5G网络的设备数目达到100万/km2。
1.3峰值速率至少达到10Gbit/s
面向2020年以后的5G网络,相对于目前的4G网络的峰值速率需提高10倍以上,然而达到10Gbit/s,在特殊情况下,用户单链峰值速率都要求需达10Gbit/s。
1.4用户速率可达到10Gbit/s,特殊需求达到100Gbit/s
在未来的5G网络中,在一般条件下,用户在任何时候都能获得10Gbit/s以上的速率,对于特殊需求的业务和用户将达到100Gbit/s,比如:急救车内高清医疗图像传输服务。
1.5可靠性高与时间短
2020年后的5G网络,需要满足用户在线服务,能随时随地的进行各种体验,并且还需满足工业信息系统、应急通信等更多场景需求。需要进一步地降低用户的控制时延,与4G网络相比,缩短了5~10倍。对于关系重大财产安全的业务和人类生命可靠性必须提升到99.9999%以上。
1.6频谱利用相对较高
由于5G网络用户的业务量大、规模大、流量高,相对来说,使用频率需求量也大,需要通过压缩等创新技术及频率倍增的应用,来提高频率利用率。相对4G网络来说,5G的频谱效率要5~10倍的提高,来解决流量带来的频谱短缺问题。
1.7网络消耗能源
相对来说较低节省能源、绿色低碳是未来通信技术的发展的方向,在未来的5G网络中,需要利用节约能源的设计,使网络能耗效率都有待提高1000倍,来满足1000倍流量的需求,但是现有网络与能耗有相当的水平。
25G关键技术概述
从目前的角度看,5G的关键技术仍在发展阶段和研究阶段,但学术界和产业认为,5G的关键技术应包含下几个方面:一是5G关键技术与无线网络构架;二是5G无线输送的关键技术;三是5G移动通信总体技术系统;四是5G移动通信验证技术。接下来对业界十分关注的5G技术进行总的介绍。
2.1高频段传输
目前,移动通信系统频段主要是3GHz以内,伴随着用户人数的增加,频谱资源也变得十分拥挤,然而在高频段里,如毫米波频率是27.3~350GHz,而带宽则高达284.6GHz,超过微波全部带宽的12倍。微波与毫米波相比,元器件的尺寸要小很多,毫米波系统能轻而易举小型化,实现进行极高速短距离通信,支持5G传输速率和容量需求。
2.2多天线传输技术
多天线技术,经历了从二维到三维,从无源到有源,从高阶多输入多输出到大规模阵列的发展,能把频谱利用率提高到数十五倍甚至再高,是目前5G技术唯一重要研究方向。
2.3同时同频全双工技术
同时同频全双工技术被称为高效的频谱效率技术,该技术在相同的物理信道上对两个方向信号的进行传输,在通信双工节点的接收机处通过对取消自身发射的信号干扰,在发射信号时候,同时接收另一节点的相同频信号。
2.4设备间直接通信技术
以往的移动通信系统连网方式,以基站为中心点,实现对市区覆盖,基站及中继站是不能随便移动的,网络结构是有限制的,在未来的5G网络里,用户规模大,数据流量大,以传统的基站模式为中心的组网方式,是没办法满足业务需求。D2D直接通信技术在没有基站的情况下也能运转,实现通信设备的直接通信,开拓了接入方式和网络连接。
2.5密集网络技术
5G是一个智能化、宽带化、多元化、综合化的网络,数据流量是4G的1000倍。想要实现目标有两种技术:一是在宏基站处布置大规模天线来取得室外空间增益,二是布置密集网络来满足室外和室内数据需求。在未来里,向高频段宽带,将采用更加密集的方案,部署高达200个以上扇区。
2.6新型网络架构技术
为了满足在未来里,使用高容量、大规模的用户需求,未来的5G网络架构将具有低时延、低成本、易维护、扁平化特点。目前产业界主要集中在云架构和C-RAN的研究上。
2.7智能化技术
5G的中心网络,是由大型的服务器来组成的云计算平台,通过交换机网络及数据交换功能的路由器与基站相连接,宏基站具有大数据存储功能和云计算功能,时效性特强或特别大的数据,提交到云计算中心进行网络处理,终端或基站的数量、形态多,不一样的业务选取不一样的频段,连接方式和天线多样化。所以,需要具有自动模式切换、智能配置、智能识别的功能,实现智能组网,在未来里,智能化技术是实现5G网络的是关键技术。
3研究情况及趋势
从目前来看,全球对5G技术的研究,都处在早期阶段,将来还需要进行标准化、外场试验、技术研究等阶段,最后才能实现商用部署,但是,尽管对5G技术和概念仍然在进行深究,对5G标准的大方向,现在产业界和学术界在基本上达成了共识。
1.1优化网络设计规划
优化网络设计是指能够实现各类网元组织结构的优化设计,降低网络能源消耗。整合分散的多个处理器核心、存储以及网络宽带等物理资源,从各个角度降低网络项目的建造和运营维护成本,实现资源优化。对网络进行优化设计更能提高移动通信各项资源的灵活性和扩展性,提高工作效率;简化拓扑结构和层次结构,这样不仅能够提高通信设备的资源集成度,降低能源消耗,还可以节约网络项目构建成本。
1.2网络实现
网络实现主要基于通信设备和项目建设来讲。首先,必须保证通信设备的性能优异,在通信设备的采购和测试阶段应该全面把握好质量关,从而在网络实现过程中做到节能减排;其次,项目建设过程中应该充分利用基础设施,做到基础设施的共建共享,避免浪费与重复。同时,为缓解用量高峰,应该尽快拓展无线局域网的范围。
1.3网络运营管理创新
21世纪是知识爆炸时代,创新和人才是这个阶段必不可少的两个因素。在网络建设工程项目中,对管理制度进行创新设计十分重要。在网络运营的整个过程中,保证每一个环节,比如设计、评估、整合等,都要做到环环相扣,这就要求管理制度要极具创新性,同时也要求创新性的人才管理团队。只有这样,才可以更好地节约资源,降低能耗,保护生态环境,实现经济效益与生态效益的最优化。
2绿色通信设备
2.1体系结构中的绿色创新
采用新型节能通信设备对于体系结构的绿色创新具有很重要的意义,可以起到很好的推动作用。对体系结构各个层面都利用绿色节能设备和技术对于实现绿色移动通信至关重要。比如,在物理层采用光子技术,可以降低能源消耗,积极研发新型能源电池,可以延长手机续航时间;在信号处理层应用新型高科技绿色元件,例如软件无线电技术,其应用简单方便,节省硬件成本和人力资源,前景十分广阔;在信息系统硬件平台可采用基于精简指令集CPU的硬件平台的半导体元件和性能优异、节约空间的闪存内存;在信息系统软件平台可尝试由用户DIY安装的开源操作系统,降低成本,同时要对电源进行升级和优化,提高工作效率。
2.2绿色生命周期
元器件的报废给环境带来很大压力,如果将通信设备内部的元器件使用周期加以延长,可以减少报废的次数,有效提高设备利用率,同时也可以避免设备制造过程原材料的浪费,减少污染。此外,还要做到对原材料积极回收再利用,避免其对环境造成的负面效应。
2.3绿色技术标准
将绿色移动通信技术标准化,可以大大降低生产成本,促进经济效益的提升,同时还可以保障用户投资的长期有效性,维护用户权益。比如IEEE1888绿色社区控制网络标准,是在全世界得到认可的情况下中国的创新技术标准,展示了国际合作的重要成果。绿色技术标准的应用,在节能减排、构建和谐社会的道路上扮演着重要角色。
3绿色通信服务
3.1手机终端服务
手机终端服务在通信业务和实践过程中发挥着重大作用。可以提高人机交互效率,为人们的生活带来方便,还可以为用户提供优良服务。比如,通过感知用户所在具体地理位置,为其提供最佳行程路线。手机终端服务有很好的市场竞争力和发展前途。
3.2智能化通道
利用智能化通道可以对整个通信过程中业务实现底层网络能力的封装输出、独占资源的封装销售等,形成整合通信、IT和网络资源的垂直行业解决方案。可以有效提高通信系统的资源利用率,降低项目建设成本。
国际两大3G标准化组织:3GPP和3GPP2。第三代合作伙伴计划(3rdGenerationPartnershipProject,即3GPP)成立于1998年12月。成员包括欧洲ETSI、日本ARIB和TTC、中国CCSA、韩国TTA和北美ATIS。3GPP的目标是在ITU的IMT-2000计划范围内制订和实现全球性的(第三代)移动通信系统规范,致力于WCDMA的发展。第三代合作伙伴计划2(3rdGenerationPartnershipProject2,即3GPP2)成立于1998年12月,成员包括:TIA(北美)、CCSA(中国)、ARIB/TTC(日本)和TTA(韩国)。3GPP2其致力于使ITU的IMT-2000计划中的(3G)移动电话系统规范在全球的发展,它是从2G的CDMA或者IS-95发展而来的CDMA2000标准体系的标准化机构。
WCDMA有Release99、Release4、Release5、Release6等版本。WCDMA(宽带码分多址)采用直接序列扩频码分多址(DS-CDMA)、频分双工(FDD)方式,码片速率为3.84Mcps,载波带宽为5MHz。基于Release99/Release4版本,可在5MHz的带宽内,提供最高384kbps的用户数据传输速率。WCDMA能够支持移动/手提设备之间的语音、图象、数据以及视频通信,速率可达2Mb/s(对于局域网而言)或者384Kb/s(对于宽带网而言)。
HSDPA(高速下行分组接入,HighSpeedDownlinkPackagesAccess)技术是实现提高WCDMA网络高速下行数据传输速率最为重要的技术,是3GPP在R5协议中为了满足上下行数据业务不对称的需求提出来的,HSDPA是与R99的信道在同一载波上,只是为HSDPA增加了专门的信道,只需要进行软件升级即可。HSDPA下行峰值速率理论最大值可达14.4Mbps。
HSUPA(高速上行链路分组接入,highspeeduplinkpacketaccess)。HSUPA通过采用多码传输、HARQ、基于NodeB的快速调度等关键技术,使得单小区最大上行数据吞吐率达到5.76Mbit/s,大大增强了WCDMA上行链路的数据业务承载能力和频谱利用率。HSUPA引入了五条新的物理信道E-DPDCH、E-DPCCH、E-AGCH、E-RGCH、E-HICH和两个新的MAC实体MAC-e和MAC-es,并把分组调度功能从RNC下移到NodeB,实现了基于NodeB的快速分组调度,并通过混合自动重传HARQ、2ms无线短帧及多码传输等关键技术,使得上行链路的数据吞吐率最高可达到5.76Mbit/s,大大提高的上行链路数据业务的承载能力。
HSDPA是WCDMA下行链路方向(从无线接入网络到移动终端的方向)针对分组业务的优化和演进。与HSDPA类似,HSUPA是上行链路方向(从移动终端到无线接入网络的方向)针对分组业务的优化和演进。HSUPA是继HSDPA后,WCDMA标准的又一次重要演进。
CDMA2000即CDMA20001×EV,1xEV的意思为“Evolution”,表示标准的发展,DO意为DataOnly(后来把DataOnly改为DataOptimized,表示EV-DO是对CDMA20001X网络在提供数据业务方面的一个有效的增强)。CDMA20001×EV-DO(DataOnly),采用话音分离的信道传输数据。CDMA20001×EV-DV(DateandVoice),即数据信道于话音信道合一。CDMA网提供两大类应用,语音和数据。根据应用CDMA2000演进可分为继续提高语音容量,从CDMA20001X演进到1X增强版或从CDMA20001X标准演进到EV-DO版本0,然后从EV-DO版本0演进到EV-DO版本A以及EV-DO版本B再到EV-DO增强版。
CDMA20001X到1X增强版的平滑演进是利用1/8空白速率帧,使用更有效的闭环功控、反向链路提早结束、前向链路提早结束、前向链路干扰抵消(QLIC)、QOF等技术,采用双天线接收的话,则每扇区的容量可达120个同时通话。1X增强版显著增加了语音容量,同时让网络和频谱投资最大化。
从CDMA20001X演进到EV-DO版本0,在原有的1X基站上增加一个专门用来做高速数据传输的载频,还需要增加新的PCF(分组控制功能模块)。兼容特性使得1xEV-DO可沿用现有网络的规划及射频部件。1xEV-DO基站还可与CDMA20001X的基站合一,并允许用户经由1X的载波使用高质量的话音服务和通过1xEV-DO的载波使用高性能的移动数据业务。
从EV-DO版本0演进到EV-DO版本A,只需对EV-DO版本0网络设备进行软件更新,升级基站中的信道板,基站系统中的其他硬件设备则完全可以保留重用。针对网络的不同情况,EV-DO版本A标准还支持终端在EV-DO版本A和EV-DO版本0网络之间的快速切换。终端和网络的后向兼容性保证了运营商可以逐步向版本A演进,保护了对原版本0网络和终端的投资。由于EV-DO版本A设备已经成熟,可以选择跳过EV-DO版本0而直接从CDMA20001X升级为EV-DO版本A。EV-DO版本A到EV-DO版本B,基站和终端之间可以在前反向多个载波上同时传送数据,从而获得更高的峰值传输速率和系统吞吐量。EV-DO版本B可以通过支持多个载频的EV-DO版本A基站进行升级来实现,这需要对基站和基站控制器进行软件更新。EV-DO版本B完全后向兼容EV-DO版本0和EV-DO版本A。EV-DO版本A和EV-DO版本0终端可以无缝接入到EV-DO版本B网络中获取服务。EV-DO版本B网络可以更有效地支持VoIP和可视电话等实时业务。EV-DO增强版完全后向兼容EV-DO版本0、EV-DO版本A和EV-DO版本B。EV-DO版本B、EV-DO版本A和EV-DO版本0的终端可以无缝接入到EV-DO增强版网络中获取服务。
2在3G之后,第四代(4G)移动通信更先进的技术旨在建立一个新的全IP化的接入网和与固网融合的纯IP核心网,目的是提供宽带移动无线接入
3G向4G的演进路线为:WCDMA和TD-SCDMA,均从HSDPA演进至HSUPA,进而到LTE(3GPP长期演进项目);CDMA2000沿着1xEV-DO.0、1xEV-DO.A、1xEV-DO.B,最终到UMB,超移动宽带(UltraMobileBroadband)。
3GLTE使用OFDM(OrthogonalFrequencyDivisionMultiplexing、正交频分复用技术)以及它的后续技术OFDMA(OrthogonalFrequencyDivisionMultipleAccess、正交频分多址技术)是未来无线宽带技术的基础。同UMB一样,LTE也采用了OFDM/OFDMA作为物理层的核心技术,不同的是LTE不再支持CDMA,而UMB为了保持良好的兼容性仍然支持在总带宽中分出一部分带宽来支持CDMA。LTE在20MHz频谱带宽能够提供下行100Mbps、上行50Mbps的峰值速率;改善小区边缘用户的性能;提高小区容量;降低系统延迟,用户平面内部单向传输时延低于5ms,控制平面从睡眠状态到激活状态迁移时间低于50ms,从驻留状态到激活状态的迁移时间小于100ms;支持100Km半径的小区覆盖;能够为350Km/h高速移动用户提供大于100kbps的接入服务;支持成对或非成对频谱,并可灵活配置1.25MHz到20MHz多种带宽。UMB是可以在1.25MHz和20MHz间以约150KHz的频率增量灵活部署,支持频段包括450MHz、700MHz、850MHz、1700MHz、1900MHz、1700/2100MHz、1900/2100MHz(IMT)和2500MHz(3G扩展频段),可与现有的CDMA20001X和1xEV-DO系统兼容,但在数据传输速率、延迟性、覆盖度、移动能力及布建弹性等方面都更具优势。UMB系统继承了1xEV-DO系统的自适应编码调制、HARQ(物理层混合重传)以及QoS控制机制,结合了CDMA、TDM、QOFDMA(准OFDMA)、LDPC(低密度奇偶校验码)等其它先进技术,同时引入了基于MIMO(多路输入输出)、SDMA(空分复用接入)和Beamforming(波束赋性)等多天线技术。在4G网络中将主要使用以下一些核心技术。
正交频分复用(OFDM)/正交频分多址接入(OFDMA).OFDM是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,子载波并行传输。每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽。OFDM可以消除或减小信号波形间的干扰,提高了频谱利用率。OFDMA是OFDM调制的一种形式,具有更高的频谱效率和更好的抗衰落性能。对于低数据率用户,需要更低的发射功耗,具有恒定而不是随时间变化的更短延迟。OFDMA会把副载波的子集分配给各个用户,以信道状态的反馈能执行自适应用户到副载波的分配。与OFDM相比,快速衰退、窄带同频干扰性能都得到了提高,改进了系统的频谱效率。
软件无线电是把尽可能多的无线及个人通信功能通过可编程软件来实现,使其成为一种多工作频段、多工作模式、多信号传输与处理的无线电系统。也可以说,是一种用软件来实现物理层连接的无线通信方式。智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,智能天线应用数字信号处理技术,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分利用移动用户信号并消除或抑制干扰信号的目的。多输入多输出(MIMO、Multiple-InputMultiple-Out-put)技术利用多发射、多接收天线进行空间分集的技术,采用分立式多天线能够有效地将通信链路分解成为许多并行的子信道,从而大大提高容量。MIMO系统能够很好地提高系统的抗衰落和噪声性能,从而获得巨大的容量。在功率带宽受限的无线信道中,MIMO技术是实现高数据速率、提高系统容量、提高传输质量的空间分集技术。
第四代移动通信系统的核心网是一个基于全IP的网络,可以实现不同网络间的无缝互联。核心网独立于各种具体的无线接入方案,能提供端到端的IP业务,能同已有的核心网和PSTN兼容。核心网具有开放的结构,能允许各种空中接口接入核心网;同时核心网能把业务、控制和传输等分开。采用IP后,所采用的无线接入方式和协议与核心网络(CN)协议、链路层是分离独立的。IP与多种无线接入协议相兼容,因此在设计核心网络时具有很大的灵活性,不需要考虑无线接入究竟采用何种方式和协议。
综上,随着移动通信的发展呈现趋势传送宽带化、应用个性化、接入多样化、网络数据化、系统互补化及有线、无线一体化的大趋势,宽带无线市场必定潜力巨大,发展前景一片光明。
参考文献:
[1]彭林.第三代移动通信技术.电子工业出版社.【ISBN】750538361.
[2]康桂霞,田辉,朱禹涛,杜娟.CDMA20001x无线网络技术.人民邮电出版社[ISBN].978-7-115-16664-7.
[3]张智江,朱士钧,严斌峰,张云勇.3G业务技术及应用.人民邮电出版社[ISBN]978-7-115-14353-2.
[4]罗凌,焦元媛,陆冰.第三代移动通信技术与业务(第二版).人民邮电出版社[ISBN]978-7-115-15962-5.
1前言
移动通信业务之所以发展迅猛主要是其满足了人们在任何时间。任何地点与任何个人进行通信的愿望。移动通信是实现未来理想的个人通信服务的必由之路。在信息支撑技术、市场竞争和需求的共同作用下,移动通信技术的发展更是突飞猛进,呈现出以下几大趋势:网络业务数据化、分组化,网络技术宽带化,网络技术智能化,更高的频段,更有效利用频率,各种网络趋于融合。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。
2网络业务数据化、分组化
2.1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。
目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。
(1)应用驱动市场
无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。
在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。
(2)因特网的影响
和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。
为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。
(3)数据速率的发展
GSM承载业务所提供的GSM数据速率最高只能达到9.6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE会让GSM运营商特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数据业务。
2.2个人多媒体通信——网络演进的方向
对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。个人移动多媒体将根据地点为人们提供无法想像的、完善的个人业务和无线信息,将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话音呼叫将与实时图像相结合,产生大量的可视移动电话,还将实现移动因特网和万维网浏览。像无线会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地的各种信箱和娱乐服务。
3网络技术的宽带化
在电信业历史上,移动通信可能是技术和市场发展最快的领域。业务、技术、市场三者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据化、分组化发展,移动网络必然走向宽带化。
通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AMPS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第一次能够在他们所在的任何地方无线接收和拨打电话。
第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、MMPS、PDC(日本数字蜂窝系统)和IS95CDMA等,均仍为窄带系统。
第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽带综合业务并实现全球无缝覆盖。2000年以后,窄带移动电话业务需求将依然很大,但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增长,而且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集将显得愈来愈重要。
第三代系统预计在2002年投入商用。
从第二代到第三代系统的变化并不像从第一代模拟网络到第二代数字网络那样存在重大的技术变迁。从目前的技术发展现状和趋势来讲,第二代系统将逐步子滑过渡到第三代系统,在此演进过程中,移动网络所能实现的数据速率逐步升级:GSM承载业务所能提供的数据速率为9.6kbit/s,1998年商用的HSCSD技术实现了57kbit/s的数据速率,1999年引入的GPRS将实现超过100kbit/s的数据速率,将在2000年引入的EDGE技术可实现超过300kbit/s的数据速率。2001年后投入商用的第三代系统将能够在广域网上实现384kbit/s的数据速率,在办公室和家中还可以达到2Mbit/s。
4网络技术的智能化
移动通信需求的不断增长以及新技术在移动通信中的广泛应用,促使移动网络得到了迅速发展。移动网络由单纯地传递和交换信息,逐步向存储和处理信息的智能化发展,移动智能网由此而生。移动智能网是在移动网络中引人智能网功能实体,以完成对移动呼叫的智能控制的一种网络,是一种开放性的智能平台,它使电信业务经营者能够方便、快速、经济、有效地提供客户所需的各类电信新业务,使客户对网络有更强的控制功能,能够方便灵活地获取所需的信息。移动智能网通过把交换与业务分离,建立集中的业务控制点和数据库,进而进一步建立集中的业务管理系统和业务生成环境来达到上述目标。通过智能网,运营公司可以最优地利用其网络,加快新业务的生成;可以根据客户的需要来设计业务,向其他业务提供者开放网络,增加收益。
关于移动智能网的研究,早在1995年就已开始,刚开始并没有具体的标准协议出现,各厂商各自制定了自己的标准,并且据此进行了不少的研究工作,如Alcatel、Nortel、Ericsson等都先后推出了自己的初期产品。这些工作为最终移动智能网标准的形成积累了经验。
1997年末,美国蜂窝电信工业协会(CTIA)制定了移动智能网的第一个标准协议——IS-41D协议。1998年1月,欧洲电信标准研究所(ETSI)在GSMphase2+阶段引入了CAMEL协议(移动通信高级逻辑的客户化应用程序),当时的版本是Phase1。1998年4月,ITU-T在新推出的智能网能力集一2标准中描述了移动接入的功能实体,称为CAMELphase2标准。
伴随着移动网络向第三代系统的演进,网络的智能化程度也在不断地提升。智能网及其智能业务是构成未来个人通信的基本条件。
5更高的频段
从第一代的模拟移动电话,到第二代的数字移动网络,再到将来的第三代移动通信系统,网络使用的无线频段遵循一种由低到高的发展趋势。1981年诞生的第一个具有国际漫游功能的模拟系统NMT的使用频段为450MHz,1986年NMT变迁到900MHz频段。我国目前的模拟TACS系统的使用频段也为900MHz。在第二代网络中,GSM系统的开始使用频段为900MHz,IS-95CDMA系统为800MHz。为了从根本上提高GSM系统的容量,1997年出现了1800MHz系统,GSM900/1800双频网络迅速普及。2002年将投入商用的第三代系统IMT-2000则定位在2GHz频段。
6更有效利用频率
无线电频率是一种宝贵资源。随着移动通信的飞速发展,频谱资源有限和移动用户急剧增加的矛盾越来越尖锐,出现了“频率严重短缺”的现象。解决频率拥挤问题的出路是采用各种频率有效利用技术和开发新频段。
模拟制的早期蜂窝移动通信系统采用频分多址方式,主要通过多信道共用、频率复用和波道窄带化等技术实现频率的有效利用。随着业务的发展,模拟系统已远不能满足用户发展的需求。数字移动通信比模拟移动通信具有更大的容量。同样的频分多址技术,数字系统要求的载干比较小,因而频率复用距离可以小一些,系统的容量可以大一些。而且,数字移动通信还可采用时分多址或码分多址技术,它比模拟的频分多址制在系统容量上大4-20倍。
GSM作为最具代表性和最为成熟的数字移动通信系统,其发展历程就是一部频率有效利用技术的演进史。GSM采用时分多址制式,其对频率的有效利用主要是通过频率复用技术的不断升级实现的。从传统的4×3方式,到3×3、1×3、MRP、2×6等新的复用技术,频率复用的密集度逐步提升,频谱效率快速提高,GSM系统的容量得到逐步释放。1995年开始投入商用的IS-95CDMA(窄带)系统,以无线技术的先进性和大容量等特点著称。它以扩频技术为基础,不同用户的信号靠不同的编码序列来区分,如果从频域或时域来观察,多个CDMA信号是相互重叠的,故理论上CDMA系统的频谱利用率比GSM系统更高,网络容量更大。同时CDMA系统具有一定的过载能力,即系统具备软容量。作为未来第三代移动通信系统主流无线接入技术的WCDMA(宽带码分多址)能够更高效地利用无线电频率。它利用分层小区结构、自适应天线阵和相干解调(双向)等技术,网络容量可得到大幅提高,可以更好地满足未来移动通信的发展要求。
7网络趋于融合,走向统一
7.1第三代移动通信系统的结构
第三代移动通信系统是宽带数字通信系统,它的目标是提供移动宽带多媒体通信,多址方式基本都采用CDMA多址接入,属于宽带CDMA移动通信技术。第三代移动通信系统能提供多种类型的高质量多媒体业务,能实现全球无缝覆盖,具有全球漫游能力并与固定网络相兼容。它可以实现小型便携式终端在任何时候、任何地点进行任何种类的通信。第三代移动通信技术的标准化工作由3GPP和3GPP2两个标准化组织来推动和实施。目前,在世界范围内应用最为广泛的第三代移动通信系统体制为WCDMA和CDMA2000。下面将对这两种体制的第三代移动通信技术以及相应的二代半过渡性技术进行介绍。
WCDMA体制移动宽带无线接入技术
1.GPRS技术:
GPRS技术是从第二代移动通信GSM技术向3G移动通信技术WCDMA发展演进的一种过渡技术,也即属于所谓的2.5G移动通信技术。GPRS全称为通用分组无线业务(GeneralPacketRadioService),是一种新的分组数据承载业务。相对原来GSM的拨号方式的电路交换数据传送方式,GPRS是分组交换技术,它以一种有效的方式采用分组交换模式来传送数据和信令。
如图1中所示,GPRS是在GSM网络基础上,对原有GSM网络子系统和无线子系统的设备及功能进行增强而成。在网络子系统中增加了GGSN(网关GPRS支持节点)和SGSN(服务GPRS支持节点)。这样,在GPRS网络子系统中,GGSN和SGSN一起构成了分组交换域,可与外部分组交换网络如X.25网络、IP网络直接相连;而原有的MSC和GMSC则构成了电路交换域,与PSTN网络相连。此外,GPRS还用用户数据和路由信息将GSM网络中的HLR增强为GPRS的数据库(GR)。在无线子系统中,GPRS增强了BSC的功能,增加了GSM业务信道和控制信道的种类,以支持GPRS的多种数据业务。
GPRS频道采用TDMA,一个TDMA帧划分8个时隙,每个时隙对应一个物理信道。在GPRS中,每个物理信道可以由多个用户共享,并可根据语音和数据的业务要求动态分配。GPRS还采用了更好物理信道编码方案,当使用8个时隙时,每个用户的最高接入速率可达164kbps。GPRS支持IP,X.25等数据通信协议,可提供移动台与移动台之间,移动台与外部分组交换网络之间的数据通信。
GPRS可优化利用网络和无线资源,维护无线子系统和网络子系统的严格分离,并允许采用其他非GSM标准的无线子系统接入GPRS网络子系统,这有利于GPRS网络的升级,便于向3G演进。GPRS的缺点是其可提供的接入速率有限,可提供的多媒体业务相当有限。
2.EDGE技术:
EDGE是一种基于GSM/GPRS网络的数据增强型技术,其英文全称为EnhancedDataRateforGSMEvolution,中文含义为“增强数据速率的GSM演进技术”。EDGE相比GPRS最大的变化是在数据传输时采用8PSK调制替代原先GSM/GPRS中的GMSK调制(高斯最小频移键控,为2PSK调制),再结合不同纠错检错能力的信道编码方案,EDGE共提供9种不同的调制编码方案(MCS),而GPRS采用单一GMSK调制,仅提供四种编码方案(CS)。这样EDGE可以适应更恶劣更复杂多变的无线传播环境。此外,EDGE在链路层数据发送和重传机制上,采用了“链路适配”和“增量冗余”技术,提高了数据重发成功率。链路适配技术可在不同MCS之间根据实时的无线链路质量及时调整采用最佳MCS方案;增量冗余技术在重发信息种加入更多的冗余信息来提高接收端正确解调的概率。综合以上各项技术,EDGE技术理论数据传输速率可高达384Kbps~473.6Kbps,与GPRS相比大大提高了用户数据接入速率,因为也被称之为2.75G技术。目前,北美和亚洲少数运营商已经开通了基于EDGE的服务,但由于运营时间尚短,其成熟性和可靠性还有待进一步观察。
3.WCDMA技术:
WCDMA属于3G移动通信技术,目前有R99、R4、R5以及R6共4个版本。
R99版本接入部分主要定义了全新的5MHz每载频的宽带码分多址无线接入网,采纳了功率控制、软切换及更软切换等CDMA关键技术,提高了频谱效率和数据传送能力。基站只做基带处理和扩频,接入系统智能集中于RNC统一管理,引入了适于分组数据传输的协议和机制,数据速率可支持144Kbps、384Kbps,最高可达2Mbps。基站和RNC之间采用基于ATM的Iub接口,而RNC则分别通过基于ATMAAL2的Iu-CS和AAL5的Iu-PS分别与核心网的CS域和PS域相连。
R99版本核心网部分向下兼容GPRS,分为CS电路交换域和PS分组交换域,CS域和PS域分别基于演进的MSC/GMSC和SGSN/GGSN,CS域主要负责与电路型业务相关的呼叫控制和移动性管理等功能,呼叫控制采用TUP,ISUP等标准ISDN信令,移动性管理上采用了进一步演进的MAP协议,物理实体与GSM类似包括了MSC,GMSC,VLR。PS域主要负责与分组型业务相关的会话控制和移动性管理等功能,在原有的GPRS系统基础上对一些接口协议,工作流和和业务功能作部分改动,相对于GPRS,增加了服务级别的概念,分组域的业务质量保证能力提高,带宽增加;语音编解码器在核心网实现,支持系统间切换(GSM/UMTS),增强了安全和计费功能。
R4版本相对于R99,无线接入网网络结构没有改变,改变的只是一些接口协议的特性和功能的增强;但在核心网CS域改变较大。R4核心网CS域采用开放式结构,控制与底层承载相分离,由MSC服务器和MGW媒体网关配合,替代原有的节点式MSC交换机实现呼叫接续和控制功能,整个CS核心网由TDM中心节点交换型演进为典型的分组话音分布式体系结构。同时,CS核心网采用ATM/IP分组交换网替代原来的TDM电路交换,提高了带宽利用效率。R4版本在无线宽带接入速率方面与R99基本相同。
R5版本在无线接入网方面引入了IPUTRAN和HSDPA高速下行分组接入。IPUTRAN在无线接入网部分采用IP来承载用户信令和用户数据;HSDPA(高速下行分组接入)用于实现WCDMA网络高速下行数据业务,下行数据接入速率理论上可高达14.4Mbps,同时可以把同样无线频段中的系统数据容量提高一倍以上。HSDPA能达到这样高的接入速率,在于其引入了先进技术以及相应的无线接入网结构的一些改进,如引入了高速下行共享信道HS-DSCH,采用缩短的子帧和高阶QAM调制、采用自适应调制编码AMC和物理层混合自动重传HARQII/III,直接在NodeB中进行快速包调度等。R5版本在核心网方面增加了IP多媒体子系统(IMS),但IMS域还无法完全取代R4分组化的CS域,R5只是R4的补充和满足IP多媒体业务的需求的一个版本。
R6版本中引入了HSUPA高速上行分组接入以及MBMS多媒体广播和组播业务。与HSDPA相类似,HSUPA采用自适应调制编码AMC、混合自动重传HARQ以及更加灵活的NodeB快速调度等技术,理论上可为用户提供5.8Mbps的上行数据接入。MBMS可在无线接入网中实现点到多点的高速多媒体业务广播和组播,实现了网络资源的共享,提高了网络资源特别是无线资源的利用效率。目前R6版本还没完全确定,还在3GPP的讨论和不断演化之中。
CDMA2000体制移动宽带无线接入技术
1.CDMA20001X:
cdma20001x是由IS-95A/B演化而来的,它是cdma2000第三代移动通信系统的第一个阶段,可以看作是2.5G技术。cdma20001x在IS-95A/B的基础上,对无线接入网络部分进行了改进,采用比IS295A/B更先进的技术,在无线信道类型、物理信道调制和无线分组接口功能上都有很大的增强。cdma20001x的话音容量大约是IS-95A/B的1.5~2倍,能够在1.25MHz的带宽上提供高达153.6kbit/s的双向数据业务。核心网部分则原来的电路交换网基础上,增加了一个分组交换网络,支持移动IP业务,支持QoS,能适应更多、更复杂的多媒体业务。
根据IMT-2000原定计划,cdma2000系统将从1x起步,即首先使用单载波系统来保证与第二代移动通信系统的兼容。随着技术的发展,通过把三个或三个以上的载波捆绑在一起的方式,进一步提高性能。但之后,多个载波的方式没有成为主要的研究方向。而是在单个载波的基础上,提出了一系列新的技术,来增强cdma2000的性能。这些新的技术被叫做1xEV技术,即1x技术的演进。这些1xEV技术主要包括1xEV-DO和1xEV-DV。
2.CDMA20001XEV-DO:
1xEV-DO采用将数据业务和和语音业务分离的思想,在独立于cdma20001x的载波上向移动终端提供高速无线数据业务,不支持话音业务。1xEV-DO针对高速分组数据传输的特点,在前向链路上采用了诸如前向最大功率发送、高阶调制、动态速率控制、自适应编码调制、HARQ、多用户分集和调度以及时分调度等多项技术,前向链路速率可达2.46Mbps;而对于反向链路上的数据传输,和cdma20001x基本相同。
1xEV-DO与1x不完全兼容,1xEV-DO单模终端不能在cdma20001x网络中通信,同样cdma20001x单模终端也不能在1xEV-DO网络中通信。在组网方面,对于那些只需要分组数据业务的用户,1xEV-DO可以单独组网,此时的核心网配置可采用基于IP的、较为简单的网络结构;对于同时需要语音、数据业务的用户,可以与cdma20001x联合组网,同时提供语音与高速分组数据业务,不过这时用户终端需要采用同时支持1xEV-DO与cdma20001x的双模终端。
1xEV-DO保持了与cdma20001x在设计和网络结构上的兼容性。在无线射频部分,1xEV-DO具有与cdma20001x相同的射频特性及实现方式,升级时可以直接使用已有的cdma20001x射频部分;在核心网部分,1xEV-DO也可以与cdma20001x共用相同的分组数据核心网。目前国际上,1xEV-DO已经商用,技术较为成熟。
3.CDMA20001XEV-DV:
与1xEV-DO只提供高速数据业务不同,1xEV-DV的设计目标要求能提供混合高速数据和话音业务。1xEV-DV可完全后向兼容cdma20001x,便于从1x网络升级,其空中接口标准分两个版本:Rel.C和Rel.D。Rev.C主要改进和增强了CDMA20001X的前向链路,前向峰值速率达到3.1Mbps,Rev.D则改进和增强了反向链路,反向峰值速率达到1.8Mbps,而在Rev.C中反向峰值速率仅为230.4kb/s。但Rev.C和Rev.D版本中对话音容量都没有很大的改善。
引言
移动通信技术飞速发展,已经历了3个主要发展阶段。每一代的发展都是技术的突破和观念的创新。第一代起源于20世纪80年代,主要采用模拟和频分多址(FDMA)技术。第二代(2G)起源于90年代初期,主要采用时分多址(TDMA)和码分多址(CDMA)技术。论文百事通第三代移动通信系统(3G)可以提供更宽的频带,不仅传输话音,还能传输高速数据,从而提供快捷方便的无线应用。但是第三代移动通信系统仍是基于地面标准不一的区域性通信系统,尽管其传输速率可高达2Mb/s,仍无法满足多媒体通信的要求,因此第四代移动通信系统(4G)的研究势在必行。
一、4G的定义及其技术要求
第四代移动通信技术可称为广带(Broadband)接入和分布网络,具有非对称超过2Mb/s的数据传输能力,对全速移动用户能提供150Mb/s的高质量影像服务,将首次实现三维图像的高质量传输。它包括广带无线固定接入、广带无线局域网、移动广带系统和互操作的广播网络(基于地面和卫星系统),集成不同模式的无线通信,移动用户可以自由地从一个标准漫游到另一个标准。其广带无线局域网(WLAN)能与B-ISDN和ATM兼容,实现广带多媒体通信,形成综合广带通信网(IBCN),他还能提供信息之外的定位定时、数据采集、远程控制等综合功能。其主要技术要求是:
(1)通信速度提高,数据率超过UMTS,上网速率从2Mb/s提高到100Mb/s。
(2)以移动数据为主面向Internet大范围覆盖高速移动通信网络,改变了以传统移动电话业务为主设计移动通信网络的设计观念。
(3)采用多天线或分布天线的系统结构及终端形式,支持手机互助功能,采用可穿戴无线电,可下载无线电等新技术。
(4)发射功率比现有移动通信系统降低10~100倍,能够较好地解决电磁干扰问题。
(5)支持更为丰富的移动通信业务,包括高分辨率实时图像业务、会议电视虚拟现实业务。
二、4G的关键技术
1.OFDM(正交频分复用)
OFDM技术实际上是MCM(Multi-CarrierModulation,多载波调制)的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰(ICI)。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。由于OFDM技术由于具备上述特点,是对高速数据传输的一种潜在的解决方案,因此被公认为4G的核心技术之一。
2.软件无线电
软件无线电(SoftwareDefinedRadio,简称SDR),就是采用数字信号处理技术,在可编程控制的通用硬件平台上,利用软件来定义实现无线电台的各部分功能:包括前端接收、中频处理以及信号的基带处理等。即整个无线电台从高频、中频、基带直到控制协议部分全部由软件编程来完成。其核心是在尽可能靠近天线的地方使用宽带的“数字/模拟”转换器,尽早地完成信号的数字化,从而使得无线电台的功能尽可能地用软件来定义和实现。软件无线电是一种基于数字信号处理(DSP)芯片以软件为核心的崭新的无线通信体系结构。
3.智能天线
智能天线是波束间没有切换的多波束或自适应阵列天线。多波束天线在一个扇区中使用多个固定波束,而在自适应阵列中,多个天线的接收信号被加权并且合成在一起使信噪比达到最大。与固定波束天线相比,天线阵列的优点是除了提供高的天线增益外,还能提供相应倍数的分集增益。智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,其基本工作原理是根据信号来波的方向自适应地调整方向图,跟踪强信号,减少或抵消干扰信号。智能天线的核心是智能算法,而算法决定电路实现的复杂程度和瞬时响应速率,因此需要选择较好算法实现波束的智能控制。
4.IPv6协议
4G通信系统选择了采用基于IP的全分组的方式传送数据流,因此IPv6技术将成为下一代网络的核心协议。
(1)巨大的地址空间。在一段可预见的时期内,它能够为所有可以想像出的网络设备提供一个全球惟一的地址。
(2)自动控制。IPv6还有另一个基本特性就是它支持无状态和有状态两种地址自动配置的方式。无状态地址自动配置方式是获得地址的关键。在这种方式下,需要配置地址的节点使用一种邻居发现机制获得一个局部连接地址。一旦得到这个地址之后,它使用另一种即插即用的机制,在没有任何人工干预的情况下,获得一个全球惟一的路由地址。
(3)服务质量。服务质量(QoS)包含几个方面的内容。从协议的角度看,IPv6与目前的IPv4提供相同的QoS,但是IPv6的优点体现在能提供不同的服务。IPv6报头中新增加的字段“流标志”,有了这个20位长的字段,在传输过程中,中国的各节点就可以识别和分开处理任何IP地址流。
(4)移动性。移动IPv6(MIPv6)在新功能和新服务方面可提供更大的灵活性。每个移动设备设有一个固定的家乡地址(homeaddress),这个地址与设备当前接入互联网的位置无关。当设备在家乡以外的地方使用时,通过一个转交地址(care-ofaddress)来提供移动节点当前的位置信息。移动设备每次改变位置,都要将它的转交地址告诉给家乡地址和它所对应的通信节点。
三、结束语
由于4G与1~3G相比具有通信速度更快,网络频谱更宽,通信更加灵活,智能性能更高,兼容性能更平滑等优点,4G将成为行业关注的焦点。相信不久的将来4G将一统移动通信的天下,产生巨大的社会效益和经济效益。
近年来,4G通信技术在国外发展迅速。全球名气较大的的移动手机制造商大多来自于欧洲,他们以强大的通信技术水平,垄断了一大半的移动通信市场。2009年,瑞典首先推出了4G网络,到目前为止,瑞典仍然是全球4G网络速度最快的国家,它的通信技术依然保持在全球的领先行列。美国作为科技大国,近年来也比较重视移动通信技术的发展。目前,美国的移动电话的普及率已经达到了一半以上。但是,由于美国使用的频谱资源与大部分的运营商使用的并不相同,这大大影响了美国网络的下载速度,使其与下载速度较快的国家之间还存在一定的差距。
1.2国内发展现状
与同为亚洲国家的日本、韩国相比,我国移动通信技术的发展要慢得多。其中,我国香港地区的4G通信技术发展迅速,网络速度排名全球第二。同时,在香港地区,大多数网络都具有了4G服务功能。在大陆地区,4G通信技术主要被三家电信运营商所使用。随着我国政府对4G技术的不断关注,4G逐渐走进了我国人民的生活。由于4G技术具有极快的访问速度,吸引了各大运营商的关注。但是近两年,微信业务的推出给各大运营商造成了巨大的挑战,传统的通信技术受到了极大的冲击,而传统技术带来的利润也随之有所下降。因此,各大运营商在争先恐后的使用4G通信技术的同时,也不能忽视这些挑战所带来的问题。所谓挑战即为机遇,随着越来越多的人使用网络,各个运营商为了提高流量带来的收入,必将加快4G技术使用的脚步。
24G移动通信技术的特点
2.1具有较快的数据传输速度
随着生活频率的不断加快,人们越来越适应快节奏的生活。因此,在进行网络数据传输的过程中,人们也不断的追求着高速度,力求节约不必要的传输时间。与3G通信技术相比,4G技术具有的比较明显的特征是具有较高的数据传输速度。它的无线访问速度较快,大约为100Mbbit/s。从理论上讲,它的传输速度比3G技术快了20倍,更加符合现代人的需求,为使用网络了人们节省了网络访问的时间,使得人们能够更加及时的获得自己所需要的资讯。
2.2具有较强的抗干扰能力
一般来讲,4G通信技术都是使用正交分频多任务技术。这个技术的优势在于,在保存传统通信技术原有的服务的基础上,增加了多种服务,使得通信技术的服务范围大幅度增加。同时,在进行大范围服务的同时,可以使得系统的性能表现为最佳状态,更好地投入到使用中去。此外,4G通信技术具有较强的抗干扰能力,极大程度上阻挡了信号的干扰,具有很好的降噪能力。
2.3具有较高的智能性
通常来说,信号在传输过程会遇到不同的环境,有些传输的环境具有一定的复杂性,这就需要较好的通信技术,将信号良好的传输出去。4G移动通信技术具有较高的智能性,能够极大程度上保证信号的传送和接收。同时,在操作传输上,4G通信技术也具有较高的智能性。此外,4G技术具有较好的覆盖功能,可以在必要的时候,进行高速变频数据的输出。
34G移动通信技术的发展趋势
3.1交互性干扰控制技术的不断发展
交互性干扰有效控制技术是4G移动通信技术中的关键技术,在4G移动通信技术的发展中起到了重要的作用。它主要使用交互的方式,有效的将通信设备之间的相互干扰降到最低。在传输过程中,当不存在其他信息的情况下,保证了通信信号传输的稳定性。同时,使移动信号的传输质量也得到了极大的提高。因此,基于交互性干扰控制技术的优势,在未来发展过程中一定会得到更好的利用,最大程度的发挥其特点,不断提高与改进,从而使得4G通信技术上升到更高的水平。
3.2多用户自由检测和识别技术得到广泛利用
多用户问题是移动通信技术发展过程中的重要问题之一,对移动通信技术的发展产生了巨大的影响。由于多用户的存在,大量的干扰信号也会不断产生,从而使得原本传输的信号受到极大的影响,降低了整个信号传输的质量。因此,在未来4G通信技术的发展中,必须引进多用户自由检测和识别技术,增加基站的信息容量。同时,运用多用户识别技术,还能够扩大原来的信息覆盖范围,减少通信设施的建设。多用户识别技术的广泛利用,将会不断提高信号传输的质量,确保通信信号的正常输入与输出。
3.3自我愈合型网络技术的兴起
一般来讲,4G移动通信技术中都存在着智能处理器。通过智能处理器中的智能化设备,能够有效地发现通信系统中出现的故障,及时的处理问题。引进具有重构功能的自我愈合型网络技术,可以在4G通信技术中加入特殊的问答装备,通过问答方式,可以将智能处理器中所发现的问题进行分析,将错误的问题筛选出来,及时进行改正。通过这种技术,网络中的各种不正常状况都可以及时得到排除,从而确保了移动通信的正常运行,维护了网络的稳定性。
3.4无线功能的逐步稳定化
无线功能的稳定性,是衡量通信技术质量的重要因素之一。因此,为了4G移动通信技术的发展进步,必须做好移动设备的节能工作。同时,必须引进无线电自动接收技术,将移动通信技术的损耗降到最低。此外,损耗的降低也减少了能源的使用,与可持续发展相呼应,在保护环境的同时,实现了节能减排的目的,更好地适应了绿色发展的全球趋势。
2车载式移动医疗通信网络系统设计
2.1业务需求分析
围绕医疗通讯车设置“帐篷医疗点”,帐篷相当于科室,内设医疗设备和电脑等,设备需要通过本地无线网络,访问车内数据中心的医院信息系统、实验室信息系统和影像归档及传输系统。同时,本地桌面会诊、远程医疗及物资管理信息等也需要通过无线网络进行通信。
2.2带宽设计
根据现场救援环境需要,本网络按可承受全网80台业务访问终端进行设计。其中带宽需求最大的是PACS传输、远程视频及本地桌面会诊3个业务;HIS、LIS访问及语音通信等业务带宽需求较小。文件传输保留1.2Mbps带宽,桌面共享平均每方60K。由于终端的局限性,本研究设计语音按8并发、2路视频并发、1路文件传输及5路桌面共享计算,共需带宽设计为4种。
2.3传输距离设计
通常帐篷医疗点围绕在通讯车220m范围以内,相互间距<60m。在特殊地形地貌的救援现场,系统应能支持扩展1倍的距离,提供400m左右的通信能力。为进一步发挥移动医疗通信车的作用,如与离开一定距离的医护人员进行通信、从山上对山沟下需要救助人员进行现场环境采集等,系统若能提供千米(km)级的无线通信能力则更好,如支持4km长距离的通信,能够使医疗通信系统适应各种救援现场环境下的灵活部署。
3基于LTE和WLAN的无线通信技术
LTE技术,即3.9G无线宽带技术(准4G),是未来的通信发展趋势和发展目标。基于LTE的无线宽带专网集群系统作为新一代宽带无线移动通讯技术,具备同时传输大容量的下行和上行数据的能力。单站情况下,单小区的下行峰值速率可达到90Mbps,上行峰值速率可达到40Mbps。在4km超长距离下,系统认可提供0.9Mbps的通信带宽。通过强大的宽带数据接入功能,现场人员可以通过无线网络实现远端数据快速查询、现场采集信息便捷上报以及工作电子流现场处理等业务,极大的提高应急救援人员的工作效率。单个CPE的WiFi可覆盖40~90m的范围,<60m范围的WiFi信号衰减较弱,不影响通信带宽,相邻数个CPE同时存在时WiFi设备可以接入信号最强的CPE中。为保障系统能够提供WLAN无线定位功能,本研究在系统设计时将LTE网络上叠加WLAN网络,形成LTE和WLAN的本地无线网络。AP通过CPE提供的LAN接口接入到网络中,以LTE为管道承载数据通信业务,AP由AC集中管控,上电后可自动部署。采用LTE通信技术能够同时提供基于LTE的集群通信功能,实现清晰、易于操作的语音通话以及语音对讲功能。
4LTE和WLAN安全性分析
医疗信息涉及个人隐私,属于保密信息,故整个系统建设需要充分考虑信息安全。LTE高安全加密集群通信和WLAN无线信号支持WIDS/WIPS无线攻击检测;MAC/802.1x接入认证等保障无线网络安全,能够满足一般民用设计的要求。
随着集群通信的发展和用户的需求,集群通信也从原来的模拟集群向数字集群过渡。但这种过度并不是简单的将原来的模拟话音转换为数字话音和提供数据传输功能就可以称为数字集群了。其实,综观国际上提出的数字集群来看,数字集群的标准都是围绕着用户的需求而发展起来和提出的。
2.数字集群移动通信网络的运行
数字集群通信是继手机、小灵通之后的第三大战场,正在成为电信领域开发的新重点,运营商、设备商正在展开一场新的角逐。在设计中针对了专业无线用户的需求,特别适合在政府和商业领域的专网使用。
2.1数字集群通信的标准
TETRA(陆地集群无线电)系统在指挥调度方面应用的比较多,可完成话音、电路数据、短数据消息、分组数据业务的通信及以上业务的直通模式,并可支持多种附加业务。在大区制条件下最大覆盖半径56公里。TETRA扩容可以逐步增加模块化,适用于小、中、大型调度系统;设计组网灵活,既适应于专用调度网,也适应于共用调度网。TETRA话音编码方式采用代数结构码本激励线性预测编码,具有良好的话音质量,即使在强背景噪声干扰下也可听清,话音质量并不像调频系统那样随场强减弱而降低。大量实验证明,TETRA系统的话音质量比GSM系统好。因此,大量应用于应急、调度、指挥等专网应用系统。
iDEN(集成数字增强型网络)系统是基于TDMA多址方式的调度通信/蜂窝双工电话组合系统。它在传统大区制调度通信基础上,大量吸收数字蜂窝通信系统的优点,如采用双模手机方式,增强了电话互联功能;采用小区复用蜂窝结构,提高了网络覆盖能力。选用这种编码是先进的,但技术公开性不好,价格较贵。但通话质量和保密性都较好。
2.2数字集群系统设备安全
设备是网络的基础,设备的安全是保障网络安全的基础,只有保证网络的物理可靠性,才能保证网络功能、信息的安全性,因此基础设备的可靠性至关重要。
对于交换机,硬件上应实现关键部件的热备份。软件上,关键的用户数据、配置数据应当及时、定期进行备份。对于基站系统要考虑其抗外界干扰的能力,如射频干扰、雷击、抗震性能等。基站系统的备用电源应根据基站覆盖区的重要程度适当配备,以应变突发事件。系统主备用倒换能力是系统可靠性的一个重要指标,如倒换时间、倒换过程对正在进行的业务的影响等。完善的监控告警机制可大大提高网络的可靠性,如系统部件可自我诊断和修复、系统可隔离故障模块、及时产生告警信息。此外,调度台、终端存储了用户的重要信息,这些设备由用户控制,应由专人维护,以保证相关用户信息不被外界窃取。
数字集群通信系统是一种特殊的专用通信系统,在应对突发事件时,对社会稳定和人民生命财产的安全起着及其重要的作用,因此数字集群通信系统的安全要求要大大高于公众移动通信系统,所以数字集群通信系统运营者必须从各方面考虑如何增强系统的抗灾变能力,如何使系统更安全可靠的传递信息。只有全面的重视数字集群通信系统的安全问题,才能使数字集群系统发挥其应有的作用。
3.未来数字集群通信技术发展方向
3.1高安全性
数字集群在基站与手机之间,信息完全依靠无线电波的传输,很容易被人们从空中拦截,在通话状态、待机状态都会泄密,即使关闭电台,利用现代高科技,仍可遥控打开,继续窃听,从中截取、破坏、调换、假冒和盗用通信信息。
3.2高抗毁性
专业移动通信在使用过程可能遇到恶意破坏的人为因素或雨雪灾害的自然因素等影响,导致网络不能正常工作,因此,未来PPDT系统要求可靠、准确地提供业务,具有高的抗毁性和可用性。通常情况下,系统以集群方式工作;在遭遇危害的极端情况下,系统以故障弱化方式或直通方式工作,保证系统能满足基本的集群业务需求。
3.3高环境适应性
专业移动通信由于它是用于全球的表层和空间,会遇到各种恶劣的气候、地形和环境;因此,要求通信装备必须能抗拒酷暑、严寒、狂风、暴雨等恶劣气候条件;必须适应山岳、丛林、沙漠、河海、高空等三维空间的不同地形环境条件;既可车载船装,又能背负手持,要经得起各种移动体的安装机械条件;在嘈杂的噪声环境,要具有背景噪声滤除功能,使通话对方听不见噪声干扰,话音清晰;在高速行驶时,通信不能中断,质量不能下降,可支持500km/h的高速运行。
4.结论
集群共网毕竟具有它自身的缺陷,那就是这些共网往往是调度功能要相对弱一些,即使是利用与专网相同的系统来组建的共网,也同样会相对使得调度功能减弱。那些在公网基础上发展起来的调度系统由于是在原来的系统协议和结构上增加了调度功能,由于原来的体制、协议和系统结构是以公网的电话业务为主而建立的,要想完全能够符合专业用户对专网的需求,应该讲目前还是达不到的。
参考文献:
[1]郑祖辉.数字集群通信漫谈[J].电子世界,2003,(12).
[2]潘娟.数字集群通信系统的安全保障[J].当代通信,2006,(13).
有线链路网络和无线网络共同构成了我们生活中所使用的网络系统,在Internet和无线网络快速进步的今天,他们的紧密的结合在一起,都为4G移动通信提供着支持和服务,复杂的4G移动通信技术在使用的过程中存在着很多的风险,无线和有线网络也同样在众多的安全威胁下提供着服务,主要表现为:(1)移动性:无线终端设备会在移动的过程中享受不同子网络的服务,不是固定于某一个网络下。(2)容错性:减少因无线网络结构不同而造成的差错。(3)多计费:在无线网络使用过程中,均是通过运营商来实现对接的,然而有些网络运营商通过网络随意加收客户的使用费用等等。(4)安全性:攻击者的窃听、篡改、插入或删除链路上的数据。
2.移动终端存在的安全问题
4G网络逐渐的已投入使用,用户们通过4G移动终端实现相互间的交流也更为密切,恶意软件及病毒也随着交流而流窜,使得它们的破坏力度和范围都有所扩大,使得移动终端系统遭受严重打击,甚至有关机或失灵等现象的出现。
3.网络实体上存在的安全问题
网络实体身份认证问题,包括接入网和核心网中的实体,无线LAD中的AP和认证服务器等。主要存在的安全威胁如下:(1)目前的网络攻击者利用多种手段,类型也是多样化,让网上用户防不胜防。但他们多半都有一个共同特点就是扮演合法用户使用网络服务,这样一来,网络监管方面也无法察觉,用户这边更是没有任何戒备,使得他们有很大的机会接近用户并进行各种骚扰和不良信息的。(2)无线网相对于宽带而言,它的接口数量有限,而且信号不稳定,容易受其他因素的干扰,这也就为攻击者提供了一个进入的漏洞,安全隐患的可能性也随之大大增强。(3)目前的的搜索功能可谓是越来越强大,尤其是“人肉搜索”,让用户的个人隐私等一再受到侵犯,这些攻击者一般都具有良好的计算机技术水平,对网络系统的运行了如指掌,很容易非法窃取用户信息,并展开下一步的追踪。(4)网络用户不肯承认他们使用的服务和资源,使进一步网络实体的认证增加了难度,这是用户可以逃避和不像曝光的行为,其实这样做只会给自己增加麻烦,到时遇到问题也很难得到有效处理。
二、4G通信安全措施
1.要建立适合未来移动通信系统的安全体系机制
主要有(1)可协商机制:移动终端和无线网络能够自行协商安全协议和算法。(2)可配置机制:合法用户可配置移动终端的安全防护措施选项。(3)多策略机制:针对不同的应用场景提供不同的安全防护措施。(4)混合策略机制:结合不同的安全机制,如将公钥和私钥体制相结合、生物密码和数字口令相结合。一方面,以公钥保障系统的可扩展性,进而支撑兼容性和用户的可移动性
2.对于无线接入网一般可采取的安全措施如下。
(1)安全接入。无线接入网通过自身安全策略或辅助安全设备提供对可信移动终端的安全接入功能。防止非可信移动终端接入无线接入网络。(2)安全传输。移动终端与无线接入网能够选择建立加密传输通道,根据业务需求,从无线接入网、用户侧均能自主设置数据传输方式。(3)身份认证。在移动终端要接入无线网络之前,要通过一个可靠的中间机构的认证,确保双方身份的真实性和可靠性。(4)访问控制。无线接入网可通过物理地址过滤、端口访问控制等技术措施进行细粒度访问控制策略设置。(5)安全数据过滤。在多媒体等应用领域,都可以通过数据过滤技术,对想要接入到网络中的非法数据进行拦截,阻止其进行到内部系统及核心网络,实现无线网络的安全性。
3.提高效率
网络终端的运行效率的提升,最主要就是减少信息量的流通,减少客户端的工作量,不使计算机长期处于超负荷的工作状态中,尽量减少时间的拖延,那么安全协议当中交互的信息量的数额的限定对提高网络运行效率就有一定帮助。