绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇人工智能课程总结范文,希望它们能为您的写作提供参考和启发。
1背景
近年来,随着“互联网+”的快速普及,互联网跨界融合创新模式进入林业领域,利用移动互联网、物联网、大数据、云计算等技术推动信息化与林业深度融合,开启了智慧林业的大门。我国林业信息化、智能化建设逐步走上了有序、快步发展的轨道,取得了重要的进展。
2011―2013年,国家林业局先后开展了中国林业信息化体制机制研究和中国智慧林业发展规划研究,在此基础上出台了《国家林业局关于进一步加快林业信息化发展的指导意见》和《中国智慧林业发展指导意见》。2012―2013年,在深入研究的基础上,林业局编制了《中国林业物联网发展框架设计》,2016年3月正式了《“互联网+”林业行动计划》。
国家林业局制定的《中国智慧林业发展指导意见》指出,信息化、智能化在林业中的应用已经从零散的点的应用发展到融合的、全面的创新应用。随着现代信息技术的逐步应用,能实现林业资源的实时、动态监测和管理,更透彻地感知生态环境状况、遏制生态危机,更深入地监测预警事件、支撑生态行动、预防生态灾害。
人工智能是计算机科学中涉及研究、设计和应用智能机器的一个重要分支。国际上,人工智能的研究已取得长足的进展;在国内,也呈现出极好的发展势头,人工智能已得到迅速的传播与发展,并促进了其他学科的发展。我国已有数以万计的科技人员和大学师生从事不同层次的人工智能的研究与学习,人工智能已成为一个受到广泛重视并有着广阔应用潜能的庞大的、交叉的前沿学科。特别是经过近几十年的发展,智能技术及其应用已经成为各行业创新的重要生长点,其广泛的应用前景日趋明显,如智能机器人、智能化机器、智能化电器、智能化楼宇、智能化社区、智能化物流等,对人类生活的方方面面产生了重要的影响。
近年来,人工智能已经在智慧林业相关领域中得到了广泛应用,例如,在智能机器人的应用方面,已经有大量的嫁接机器人、水果采摘机器人、农药喷洒机器人、果实分检机器人等投入使用;在专家系统的应用方面,森林病虫害诊断专家系统、病虫预测预报专家系统、林产品生产管理专家系统、专家咨询和人员培训专家系统等也得到了广泛应用。
随着人工智能在智慧林业中的广泛应用,涉林企业和事业单位对智能型林业高技术人才的需求也在不断加大。为了适应市场对智能型人才的需求,自2003年起,国内诸多林业高等院校在计算机科学与技术专业本科阶段、林业相关专业的研究生阶段陆续开设人工智能课程,同时不断加大人工智能课程的比重,因此,人工智能课程教学对于林业院校显得越来越重要。
2林业院校人工智能课程教学现状
林业院校开设人工智能课程的专业不多,但有不断增加的趋势。以中南林业科技大学为例,该校计算机科学与技术本科专业自2003年起就开设了人工智能课程,所用教材一直是蔡自兴教授主编的《人工智能及其应用》;另外,面向部分专业的硕士和博士研究生开设了人工智能相关课程,如农业硕士的农业信息化领域研究生开设了人工智能技术,森林经理和森林培育两个专业的博士研究生开设了人工智能与专家系统。
针对计算机科学与技术本科专业,人工智能课程主要使用蔡自兴教授主编的《人工智能及其应用》教材施教,但由于课时数仅有32学时,关于人工智能的一些高级应用,如神经网络、专家系统、机器学习等,采用专题的形式组织教学。该专业没有设置实验学时,仅在理论课堂上演示了一些仿真软件,如BP神经网络仿真环境。
针对农业硕士的农业信息化领域研究生和森林经理及森林培育两个专业的博士研究生,教学计划安排的学时数为40学时,没有指定教材,仅给学生列了蔡自兴教授的《人工智能及其应用――研究生用书》等几本参考教材。课堂主要以专题的形式组织教学,每一讲除了相关的理论以外,还介绍一些工程实践应用的例子,让研究生能够了解这些人工智能算法如何在实际中得到具体应用。
3林业院校人工智能课程教学存在的问题
全国各高等院校的人工智能课程教学都或多或少地存在一些问题,林业院校更有区别于其他类型院校的显著特征,而且林业院校开设该课程教学相对较晚,因此林业院校的人工智能课程教学存在更多的问题。
(1)师资短缺。在林业院校,林学相关专业开设该课程往往由林学相关专业的教师主讲。这些非计算机相关专业的教师虽然曾从事过人工智能个别算法或领域研究,但不具备全面的人工智能相关专业知识,在讲授不熟悉的人工智能知识点时显得力不从心。
(2)教学内容专业性不强。人工智能是计算机科学的一个分支学科,一般的人工智能教材都比较适合计算机相关专业的学生使用,但是农业信息化、森林经理、森林培育等专业的学生不管是专业基础还是行业应用背景均与计算机类专业学生不同,如果我们仍然按普通的教材施教,教学内容就缺乏林科特色,显得专业性不强,无法吸引学生的听课兴趣。
(3)教学难度过大。林业院校涉林专业的学生一般只有计算机文化基础、C语言等简单的计算机课程基础,缺乏算法思想。而人工智能课程涉及很多高级、复杂的算法,不论从算法思想,还是从算法实现和算法应用,对非计算机类专业学生来说难度过大。因此,在教学内容和教学要求上要做一些取舍。
除此之外,还存在诸如缺少实验环节、教学手段单一、教学案例缺乏等其他普遍性问题。
4林业院校人工智能课程教学改革建议
通过分析林业院校人工智能课程教学存在的问题,结合自己近十余年来从事人工智能教学的经验,我们提出了一些改革建议。
(1)推行专题式教学,解决师资缺乏的问题。在师资缺乏的情况下,由一名教师完成整个人工智能课程教学比较困难,同时,可能有多名教师分别在人工智能的不同方面进行过深入研究。因此,可以将该课程按章节分成各个不同的模块,每一个模块设一个专题,如神经网络专题、专家系统专题、机器学习专题等,再由多名教师分别承担自己熟悉的专题进行讲授。这样既可以解决一位教师的知识不足,又可以让各位教师结合自己的科研将每一个熟悉的专题讲授得更加详细、更加有趣。
(2)教学内容与涉林专业紧密结合,解决专业性不强的问题。事实上,人工智能的各领域应用在林业行业都能找到对应的应用实例。例如,林果采摘机器人就是机器人在林业中的应用;林火识别和林木病虫害监测就是模式识别在林业中的应用;林火蔓延预测可以用到隐马尔科夫模型;PAID50专家系统平台就是专家系统在农林业中的应用典范等。因此,在教学过程中,我们可以考虑将人工智能知识与林业应用结合进行讲解,这样学生更容易接受也更乐意接受。更进一步,如果能够结合这些林业应用编写一本《人工智能及其林业应用》教材,将会更加适合涉林专业的学生学习这门课程。
1人工智能在会计领域的应用特质
将德勤财务机器人、用友财务机器人等人工智能在会计领域的应用状况进行分析,可以看到人工智能在会计领域的应用有以下特点。(1)大量规则化应用领域被人工智能取代。原始凭证审核,依托于电子票据二维码应用,票据关键信息(如发票抬头、税号、发票内容、金额等)被人工智能识别并依照规则进行判断;根据原始凭证相关信息依照借、贷规则选择相应会计科目编制会计凭证,也是人工智能依照既定规则完成;根据记账凭证完成记账和报表编制,在会计电算化时代即已完成,对于人工智能而言,则更是“小儿科”,仅需要依照既定规则将数据库文件以视图形式呈现。可以看到,从原始凭证审核、记账凭证编制再到账簿形成、报表形成,会计明晰的规则为人工智能应用提供了切合的舞台,而有明确规则的领域是人工智能能够凸显其计算能力的优势领域。由此可见,以规则为基础的会计核算应用领域能够被人工智能“完美”替代。这也是德勤机器人、用友财务机器人等人工智能最先得以应用的领域。(2)经验化应用领域将被人工智能取代。人工智能以超强的自我学习能力著称,能够通过大数据获取认知上的进步,可以从大量的图片中学习识别猫,也可以从大量的棋谱中学习对弈。会计、医生曾经被认为“越老越值钱”,即是基于经验的价值增加,在工作中不断学习积累经验,能够借助经验处理非常规、复杂的情形。通过学习积累经验获得认知进步,已经成为人工智能擅长的领域。在大数据的基础上,人工智能可以通过案例学习获得“经验”,并且由于存储记忆能力的显著优势超过会计、医生的经验。因此,经验化应用领域将被人工智能取代。(3)人工智能应用推广速度受到成本的影响。2017年德勤财务机器人推出,随后用友财务机器人、浪潮财务机器人也相继面世,一年时间之后这些财务机器人并没有大量应用,其原因既有技术成熟度方面的原因,也有成本方面的原因。财务机器人的应用成本,不仅包括购买财务机器人的价格,还包括企业转换成本。在ERP、财务共享中心等信息化建设之后,信息系统建设的投入大、实施风险高的特征使得企业对于系统切换心存顾虑,使用财务机器人是否又将成为投入高、见效慢的项目,成为企业应用财务机器人不得不考虑的问题。也正是由于受到应用成本的影响,财务机器人在2017年推出之后只是引起了观念、认知上的“地震”,广泛的应用并未看见。
2“基础会计”课程核心
从目前国内高校会计专业、财务管理专业所开设“基础会计”(会计学)课程的情况来看,该课程仍然作为专业基础课开设,其核心内容一般包括:(1)会计核算基本方法,涉及会计要素、会计等式、复式记账、凭证、账簿、财务报告等内容。通过这些内容的学习,学生将掌握借贷记账、凭证编制、账簿登记、财务报告编制等基本方法,掌握会计核算的基本规则,理解会计的基本逻辑与方法。(2)会计核算基本操作,涉及凭证填写与审核、账簿登记、财务报表编制等内容。在会计基本方法学习的基础上,学生将通过实验等方式,掌握凭证填写与审核的规范、账簿登记的规范、财务报表编制规范等操作环节的要求,通过实践体会从凭证填制与审核、账簿登记、财务报表编制的规则与过程,并完成从理论到实践的转换。(3)会计视角的形成。在对会计要素、复式记账的理解中,学生将完成对经济活动的会计视角理解。例如,企业完成销售活动,从经济活动的范畴理解,更多强调客户关系管理、合同签订、履行合同等节点,而从会计视角理解,则更强调伴随销售活动产生的资金流和成本化物流,即在收入形成的同时,根据资金支付的状况选择银行存款、或者应收账款、或者应收票据、或者预收账款进行核算,同时在物流发生后结转相应成本。将经济活动的会计本质进行识别,培养和形成会计视角成为“基础会计”课程的关键内容。也正是因为这个原因,“基础会计”成为会计入门课程。
3人工智能对“基础会计”课程的挑战
(1)规则化应用将被人工智能取代,但修订完善规则为会计人员留出了空间。人工智能因其超强的运算能力,能够在既定规则的指挥下“毫无怨言”地处理原始凭证审核、记账凭证编制、账簿登记、报表编制等工作,并且处理效率更高。单纯地规则化应用,会计人员与人工智能相比,完全不具有优势。仅仅只有在人工智能技术应用的成本还相比人工成本更好的前提下,原始凭证审核、记账凭证编制、账簿登记、编表编制工作仍由会计人员完成。当人工智能技术应用成本得以降低,采用人工智能技术相比雇佣会计人员成本更低,会计人员无疑将面临被人工智能所取代。这也是业界认为人工智能带来会计“地震”的重要原因。虽然2017年会计人工智能出现后并没有马上带来会计人员下岗潮,但这一时刻不会太远,一旦人工智能应用成本得以降低,在人工成本逐渐上升的现实状况下,处理原始凭证审核、记账凭证编制、账簿登记、编表编制的纯规则化会计岗位将被人工智能取代。与此同时,我们必须意识到,人工智能以规则为基础完成会计活动,那么谁来定义规则?战胜棋圣的人工智能以围棋规则为基础开展对弈,无人驾驶以道路交通规则为基础完成驾驶,财务机器人在完成会计活动时同样基于既定的规则。从国家层面看,“会计准则”处于不断的修订完善过程中,新的经济形式不断出现,会计准则往往紧随着新经济活动而修订完善。一旦会计准则变更,意味着完成会计活动的人工智能所依据的规则也需要变更。因此,规则变更与修订为会计人员留出了空间。“人工制定规则,人工智能完成规则”可能成为未来会计活动的新形式!会计人员制定规则,是否需要从了解基本规则入手呢?答案无疑是肯定的。作为制定规则的会计人员,不可能完全不了解基本的借贷规则、基本的账务处理规则,就开始着手调整规则。基于此,了解和掌握基本会计规则应当成为会计人员的必须,通过“基础会计”课程促使会计人员了解和掌握会计基本规则也成为必要选择。但人工智能应用会计规则的优势,促使会计人员在学习掌握基本会计规则时必须思考,学习基本会计规则的目的是应用还是修订完善?如果仅仅将学习会计规则的目的定位于应用,这样的会计人员只能定义为初级会计人员,一旦其人力成本高于人工智能技术应用成本,这种岗位人员无疑是会惨遭淘汰。因此人工智能的出现逼迫会计人员将学习会计规则的目的定位于修订会计规则的高端人才,只有在基础规则之上,跳出规则制定规则,才可能在人工智能应用的大趋势下赢得一席之地。(2)经验积累将被人工智能取代,但经验规则化为会计人员留出了空间。会计人员的经验积累建立在大量案例处理的基础上,在复杂经济业务处理过程中形成隐性知识,如果这些隐性知识不能显性化、不能总结提升为规则,这些隐性知识只能藏于人员的头脑里,导致似乎“越老越值钱”。人工智能具有大数据处理能力,在大数据基础上形成“经验”从而自我学习,并且其总结的经验将以“代码化”的形式显性体现,相比会计人员而言,经验形成的能力更强、经验显性化的能力也更强。但从经验到规则,人工智能还不能直接将积累的经验形成规则,规则的形成还需要人工干预。因此,会计人员的经验积累可以被人工智能取代,但经验规则化为会计人员留出了空间。面临人工智能应用,会计人员“越老越值钱”的优势将不复存在,会计人员的价值不再建立在工作经验的基础上,而是建立在经验知识化、并进一步规则化的基础上。会计人员要完成经验规则化过程,也需要对基本规则熟悉了解、并对经验是否作用于规则修订进行判断的基础上,因此对于基本规则的了解和掌握也是必不可少的。尽管“基础会计”课程仅仅是会计入门知识的介绍,不能形成会计处理经验,在经验积累方面不存在是否课程内容是否被人工智能取代的问题,但由于会计人员需要将经验规则化,需要熟悉了解基本规则,并对经验是否推动规则变化做出判断,因此通过“基础会计”课程学习了解基本规则仍然是必要的。(3)会计视角的形成仍需通过“基础会计”课程培养。人工智能完成了从原始凭证审核到记账凭证编制、再到账簿登记、报表编制的任务,使用人工智能完成这些任务得到的是凭证、账簿、报表这些结果的呈现,对于这些结果、这些信息究竟对于会计人员意味着什么,会计人员通过这些信息怎样从会计的视角去理解经济业务,人工智能并未给出答案。而“基础会计”课程则是从经济业务到会计业务的桥梁和纽带,通过“基础会计”课程的学习,会计要素、会计科目等内容成为将经济语言转换为会计语言的工具,会计视角得以培养形成。因此,从会计视角培育需要来看,“基础会计”课程仍然是有必要开设的。
4“基础会计”应对人工智能应用的适应性调整
概括起来看,面对人工智能应用的大趋势,“基础会计”课程仍有必要开设,但应对这一趋势,需要从课程目标、课程内容上进行适应性调整。具体包括:(1)“基础会计”课程目标需要定位于会计基本规则体系建立而非操作能力。由于人工智能能够以高效率的优势完成规则应用,因此“基础会计”课程目标不能再强调凭证编制、账簿登记、报表编制等应用能力,应该将“基础会计”的课程目标定位于促使学生构建会计规则体系,培育经济业务的会计视角。学生学习“基础会计”的目的不再是掌握原始凭证审核、记账凭证编制、账簿登记、报表编制操作,而是建立会计规则体系,掌握会计语言实现从会计角度理解经济业务。(2)“基础会计”课程内容需要强化会计要素、会计等式、借贷记账等基本规则体系内容,弱化凭证、账簿等操作性内容。根据前面的分析可见,“基础会计”作为基本规则介绍的入门课程,学生需要通过该门课程的学习,掌握会计基本规则,并在此基础上逐步培养提升规则制定的能力。以往课程中,通过实验、实训提高学生填写凭证、登记账簿的操作能力,但这些操作未来将被人工智能高效替代。在人工智能在会计规则化应用领域形成趋势的当前,操作能力培养这部分内容需要弱化,而对于会计规则体系的理解、会计视角的培养应当强化。(3)“基础会计”课程内容中需要适当增加有关大数据、人工智能方面的内容,介绍大数据、人工智能在会计领域的应用趋势,以帮助学生了解会计在信息时代、人工智能时代可能发生的变革,提前应对可能发生的变化。会计不能脱离社会经济生活而存在,人工智能时代已经对会计提出了变革要求,应对这一要求,“基础会计”应当不回避,主动做出调整和适应。例如,对于会计总论的阐述中,介绍会计的发展趋势,不能还停留将会计电算化作为发展前沿,电算化阶段已经成为过去,大数据、人工智能才是未来的发展前沿;在会计的发展阶段中,古代会计阶段、现代会计阶段、电算化会计阶段的划分也值得商榷,复式记账、计算机的出现作为阶段划分的关键节点,但在2017年人工智能推出后,是否在电算化会计阶段之后已经需要重新再切分出人工智能会计应用阶段,值得学术界探讨。
5结语
财务机器人诞生后会计岗位可能面临失业潮,“基础会计”课程似乎也已经没有必要开设。通过分析人工智能的特质、“基础会计”课程的核心,指出在人工智能应用趋势到来的当前,规则化应用将被人工智能取代,但修订完善规则为会计人员留出了空间;经验积累将被人工智能取代,但经验规则化为会计人员留出了空间;会计视角的形成仍需通过“基础会计”课程培养。因此“基础会计”课程仍然有必要开设,其课程目标需要定位于会计基本规则体系建立而非操作能力,其课程内容需要强化会计要素、会计等式、借贷记账等基本规则体系内容,弱化凭证、账簿等操作性内容,同时课程内容中需要适当增加有关大数据、人工智能方面的内容。
主要参考文献
[1]陈婷蔚.人工智能在会计领域的应用探析———以德勤财务机器人为例[J].商业会计,2018,5(10):77-78.
[2]王加灿,苏阳.人工智能与会计模式变革[J].财会通讯,2017(22):41-43.
[3]任世赢.人工智能技术对会计行业的影响及对策[J].北方经贸,2018(1):96-97.
中图分类号:G64 文献标识码:A 文章编号:1674-098X(2014)10(b)-0155-02
面对航天科技迅猛发展,现代军备技术快速提升,培养具有专业性的高素质航天类人才,是我国航天科技发展的战略选择,也是航天重点高校面向并有效服务航天事业的历史责任。航天类本科生的教育形式也需要突破传统的方式,着重多样性、前沿性、工程性,因此,该专业的各门课程教育都应该结合专业特点,探索新的教学模式。
人工智能自1956年诞生50多年以来,引起众多科研机构、政府和企业的空前关注,已成为一门具有日臻完善的理论基础、日益广泛的应用领域和广泛交叉的前沿学科。由于航天领域的特殊要求,人工智能在其发展中发挥着不可替代的重要作用,各发达国家都相继开展了人工智能与航天技术相结合的研究,致力于实现可重构的、具有容错能力的、智能的飞行系统和管理系统。因此,“人工智能”作为航天类专业的一门特色选修课,应结合专业特点展开更具有实用性和创新性的教学。
1 人工智能课程特点
一方面,“人工智能”是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域,具有知识点多、涉及面广、内容抽象、不易理解、理论性强等特点,使得该课程的教学具有较大的灵活度和较高的难度。另一方面,“人工智能”是一门正在发展中的学科,具有较强的前沿性,计算机科学、信息科学、生物科学等相关学科的发展不断的提出了许多新的研究目标和研究课题,使得人工智能的技术和算法也需要不断更新,这在很大程度上增加了“人工智能”课程的教学难度。
2 航天类专业特点
首先,航天类专业具有较强的工程性。在专业的教学改革中有统一的特点,即强调要体现航天工程技术的综合性、系统性, 注重培养复合型人才。其次,航天类专业具有一定的前沿性。因为航天飞行器作为现代高科技和多种学科技术综合应用的结晶,应及时把现代先进科技融入到了专业基础和专业类的课程教学中, 专业知识更新快成为又一特点;另外,航天类专业应注重实践性教育。尊重个性和兴趣,强调动手能力,实验室对学生开放,要求学生自主地设计完成实验,强调对学生设计理念和创造能力的培养。最后,航天类专业应重视产学合作。产学合作的目的在于推动学校与航天产业的持续全面合作,造就一支科学技术研究和工程实践兼备的教师队伍。
3 教学模式的探索
3.1 教材的选择
人工智能作为一门新兴的学科,其理论与方法都还在不断的发展与完善中。就目前来看,关于人工智能的定义和范围都没有一个统一的标准,不同的教材所介绍的内容也不尽相同。在教材选用方面,需要综合考虑专业特点和学生的知识背景。本课程主要针对航天类专业高年级本科生,该类学生具有一定的数学、计算机、信息论、通信理论等基础知识,对航天应用的基本需求有初步的了解,因此,“人工智能”课程难度应该控制在中级,可以较深入的介绍人工智能的基础算法和应用案例。
中南大学蔡自兴教授积累了多年的教学与科研经验,借鉴了国内外其他专家和作者的最新研究成果,吸取了国内和国外人工智能领域学术书籍的长处,于1987年编写了“人工智能及其应用”一书,该书根据人工智能学科的新发展不断修订,推出四个版本。本课程采用“人工智能及其应用(第4版)”,其中大部分内容适合本科生学习。另外,本课程还给学生提供其他一些参考书目,如N.J.Nilsson 的“Artificial Intelligence:A New Synthesis.Morgan Kanfmann”等经典教材。
3.2 课堂教学形式的探索
“人工智能”课程内容较抽象,概念较为繁多,若采用单一的课堂讲授的方式,学生容易概念混淆、理解不透,逐渐产生厌倦情绪,导致教学效果差。本文探索不同的课堂教学手段,根据不同内容采用不同的教学手段,有利于学生对课程内容的理解与吸收。另外,考虑到航天类的专业特点,突出课程内容的工程应用,增加研究性质的教学内容与形式,有利于培养学生的创新能力和实践能力。
(1)课件采用图文并茂的PPT。综合利用文字、图像、声音、视频等多种媒体表示方法,在介绍原理和概念时采用精辟的文字,介绍算法流程时采用图像,介绍算法应用时采用视频。在PPT中适当利用不同的字体、颜色或动画来突出重点,细化流程,引导学生的思路,便于集中注意力接受重点内容。
(2)适当增加课堂讨论与练习。对于人工智能的一些基本问题,可以引导学生进行调研和讨论,来深化课程内容的了解,并提高学生的学习兴趣;对于重要的算法和理论,可以增加课堂练习,让学生实际动手进行公式的推导或演算,并在练习中分析学生对问题的理解程度,有针对性的增加讲解或指导。
(3)适当采用类比的讲解方式。对人工智能的不同学派,不同方方法,以及方法的不同应用,广泛的采用类比的形式进行讲解,不仅可以复习已学习的内容,也利于对新内容的理解。并且,通过对不同内容的比较总结相似点、区分不同点,可以避免概念的混淆,清晰的掌握课程内容。
(4)增加研究性教学。研究性教学强调通过问题来进行学习,有必要将实际应用案例或者授课教师的科研项目融入日常的教学工作中去,用“启发式”、“案例式”教学激发学生“自主学习”能力。
3.3 课程内容的探索
一方面,鉴于本科生知识结构还不够完善,“人工智能”课程的内容要控制在适应本科生学科基础的中等难度;另一方面,鉴于航天类专业的特点,课程内容应更注重与航天应用相结合的内容,并且在课程中增加具体应用的介绍。具体的课程内容如表1所示。
3.4 考核形式的改革
“人工智能”课程注重学生创新能力和实践能力的培养,传统的试卷形式不能全面的反应学生的学习效果,因此,应采用课堂表现和课程报告相结合的方式进行综合考核。
一方面,重视学生提出问题、分析问题和解决问题的能力,对学生课堂讨论与练习的表现进行考核评分,作为总成绩的参考;另一方面,注重学生课题调研和实践的能力,采取提交课程论文的形式进行考核。正确引导学生根据个人兴趣、课程内容、可行性、实践难度进行合理选题,并根据所选题目进行文献查阅和总结,完成调研报告或算法实现报告。结合者两个方面进行最终成绩的评定,综合衡量学生问题分析能力、论文写作能力和创新实践能力。
4 结语
航天类专业的本科生教学需针对专业特点有的放矢,该专业的课程教育都应该趋向于前沿性、专业性和实用性。本文的“人工智能”课程教学改革方案不仅考虑到该课程属于前沿叉学科的特点,也综合考虑了航天类专业的特点。为了使课程教学更好地服务于学生,本文提出的改革方案打破传统的教学模式,将课堂理论讲解、课堂讨论、课后调研、项目实践等相结合,充分调动学生的学习兴趣和积极性,提高学生的创新能力,有利于培养真正符合航天领域所需要的综合型高级人才。
参考文献
[1] 王甲海,印鉴,凌应标.创新型人工智能教学改革与实践[J].计算机教育,2010(15):136-138,148.
[2] 刘兴林.大学本科人工智能教学改革与实践[J].福建电脑,2010(8):198-199.
[3] 怀丽波.32课时《人工智能基础》课程教学的几点思考[J].华章,2013(34):193-194.
[4] 纪霞,李龙澍.本科人工智能教学研究[J].科教文汇(上旬刊),2013(6):91-92.
[5] 肖春景,李建伏,杨慧.《人工智能》课程教学方法改革的探索与实践[J].现代计算机(专业版),2013(26):32-34.
[6] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1):146-148.
(1)为部分优秀的学生将来做更深入的研究打坚实的基础。在面向知识经济的今天,研究获取、表示和使用知识的人工智能学科越来越受到人们的重视。目前人工智能研究被列为中国高技术领域的重点之一。以专家系统为代表的智能化系统在信息技术中也占有重要地位。因此在高等教育中开展人工智能教育和智能化系统的研发,不仅是计算机科学的应用,也是促进各学科服务于国民经济发展的必然趋势。为使人工智能的理论、方法和技术的研究与应用普及和深入,教育重心必须要下移,即从研究生教育向本科教育普及。开展本科层次人工智能普及教育的有效途径之一是在本科高年级开设相关选修课。开展人工智能教育,不仅能够更好地发挥高等院校的育人和科学研究功能,而且能为学生拓宽专业路径,扩大自主学习空间和发展个性创造条件,同时也为营造一个使学生不仅有宽厚、扎实的理论基础,且具综合分析和解决问题能力的环境。?
(2)为将来从教的学生积聚大量的知识。英国早在1999年,人工智能课程已经作为选修课出现在中学的信息与通讯技术(ICT)课程中。许多中小学还通过机器人竞赛活动来激发中小学生学习人工智能的兴趣,使学生不仅提高了用信息技术解决问题的能力,而且培养了多种思维方式,获得了更多的创新空间。美国现行的中学信息技术课程设置中,将人工智能的内容作为“媒体与技术”层面对12年级学生的要求。澳大利亚的部分中学开设的信息处理与技术课程,人工智能、信息系统、算法和程序设计、社会和伦理道德、计算机系统分别作为5个主题共同构成了该课程的教学内容。在该课程的大纲中规定,人工智能部分的教学内容在高中第3学期为12年级的学生开设,教学时间为10周。?
在我国,多年以来中学奥林匹克信息学竞赛中一直包含有人工智能相关的题目,涉及启发式搜索、博弈、智能程序设计等问题。2003年4月,我国教育部正式颁布《普通高中技术课程标准(实验)》,首次在信息技术科目中设立了“人工智能初步”选修模块,标志着我国高中人工智能课程的正式起步。?
我国的新课程标准颁布后,教育部评审并通过了分别由教育科学出版社、广东高教出版社、地图出版社、上海科技教育出版社和浙江教育出版社出版的5套高中《人工智能初步》教材,并开发了相应的教辅材料,包括教师用书和配套光盘等。为了配合中学人工智能课程的实施,国内也推出了一些适合中学生学习与体验的人工智能软件和网络资源。另一方面,一些高校的本科生、研究生也逐步关注中学人工智能教育的开展并将其作为毕业论文的研究选题。一些师范院校适应形势要求,已为师范生开设了与此相关的选修课程。?
2 人工智能的教育及教学条件现状?
通过对本人多年的教学过程进行总结,我校的《人工智能》课程教育现状可总结为如下几点:?
(1)理论知识充裕。但与实践相脱节,特别是在智能科学技术的教育教学方面。尽管知识面相当广泛,而人工智能理论的普及教育以及智能技术的开发与应用仍然十分滞后。?
(2)同其它普通高等院校一样,在本校,人工智能技术的研究与应用尚未普及,甚至比不上其它院校。这不利于培养学生的科研兴趣及创造精神。?
(3)缺乏配套实验教材,实验教学内容缺乏,无法培养学生的研究能力和创新能力。只有开设实验项目,才能使人工智能的相关知识具有研究性和综合性。?
(4)对中小学智能教育的深度及教学方式、教学特点缺乏研究。做为师范类院校,我认为在对学生进行基础知识教育的基础上,要紧抓中小学智能教育的特点对师范类学生进行相关的教育与培训。?
相对于教育现状,我校的《人工智能》课程教学条件现状要稍好一些,其状态如下:?
(1)教材使用国家级规划教材,此教材非常系统地介绍了人工智能的基本原理、方法和应用技术,适合本科及研究生使用。在我们的授课过程中,也会适当为学生提供相关的国内其他先进教材,如中南大学蔡自兴教授的《人工智能及其应用》等。?
(2)为了促进学生自主学习,我们准备了多种类型的扩充性学习资料,加强学生主动学习的意识,包括:课程相关杂志和书籍目录,以及部分重要的参考文献,与人工智能相关的网络资源如优秀BBS、新闻组、网址等。 它们包括了大量的文献资料、本领域研究的前沿动态等。 使用表明,学生非常乐于查阅这些资源。 使学生能通过使用这些资源进行一些人工智能程序设计,探讨一些问题,在课堂讨论中展示他们的收获。?
(3)校园网的普及与不断优化使本课程有优良的实践性教学环境,能充分满足教学需要。我们拥有较充足的多媒体教室和网络教室,为实现本课程教学提供了物质保障。在网络资源建设方面,全校办公室、教室、学生宿舍和教师宿舍都以宽带网相连,这些硬件设备对本课程教学发挥了重要作用,使本课程教学质量得以明显提高。?
3 人工智能教学方法及手段的改革?
针对我们现在所采取的教学方法,我认为存在许多不足,如教学方式比较单一,教学内容偏重理论讲解等,为此,提出以下教学方法的改革:?
(1)通过多种途径激发学生的学习兴趣。课程的学习效果,直接受到学生兴趣和参与意识的影响。一般来讲,《人工智能》作为一门前沿课程,开始学生学习兴趣很大,当开始接触到抽象理论知识及部分算法时,学生往往感到不易接受。 我们通过各种途径和方法, 激发和培养学生的学习兴趣,包括鼓励学生参与某部分知识的扩充性资料查找,预留一定时间请学生负责对此内容进行讲解,布置学生对某个基本成型的实验进行纠错及验证,降低问题解决的难度。学生因此产生兴趣从而做更深度研究。?
(2)进行启发式教学。 我们可以尝试在教学过程中不断提出问题请学生思考,启发学生求解这些问题,鼓励学生提出自己的猜想和解决方案,然后摆出教材中的解决方案,并与同学所提出的观点进行分析和比较,这足以加强学生学习的主动意识和参与意识,提高学生学习的积极性。?
(3)课堂辩论与交互式教学。 组织课堂辩论,讨论的议题可定位为譬如人工智能是否能超过人类智能等有争议的问题。学生通过对这些问题展开激烈争论,激发了学习潜能,明确了学习目标。当然师生间的交流方式还有很多,如邮件互发、QQ留言等,也可在课程网站中的互动平台进行交流。?
(4)分层次因材施教。 在授课过程中,通过对每个具体学生的学习进度、课堂作业情况进行及时评估,对学生提出进一步的学习建议和指导, 实现个性化的教学。 对优秀学生探讨,可以在教学设计和实验设计中要求其选作部分探索性、创新性的功课和实验,以发挥学生个性优势。对于有意于将来从事中小学教育的学生可以在机器人及人工智能技术发展现状等知识层面对其做问题讲解。而那些看似缺乏兴趣的学生,我们可以用多媒体手段如播放人工智能相关电影及科学小片引起其兴趣,实行逐步引导的教学过程。?
另外,我们可以尝试双语教学。 采用中文教材和讲授的同时,注重在课程中的关键词同时用英文表示,并适当指定英文参考短文和英文参考书。使学生能够接触国外文献资料,加深对学习内容的理解,获得更宽广的知识。我们也可以在教学内容安排上,注重理论联系实际,将一些人工智能网络上的虚拟实验给学生进行课外上网练习,从而使学生了解算法的具体运行过程, 通过参与达到知识的理解,掌握基本方法和技术。?
根据现有的条件,我们在教学中可以采用多媒体教学和网络课程教学相结合的方法,充分利用多媒体的丰富表现形式,利用网络课程的交互性、情景化等特点,构筑以学生为主体的《人工智能》课程现代教学模式。 对于抽象知识,可通过动画和视频演示,通过声音和图像展示人工智能的历史、人物和前景,做到学生直接而深刻地看到知识的内涵外延。网络课程能较好地实现交互并使学习过程情景化,通过网络课程的课堂练习和章节练习,教师可以评价学生的学习情况,并给学生提出学习建议,从而提高学生的研究力和创新力。我们也可以给学生播放中学《人工智能》课程课堂教学录像,以使学生看到初高中学生的知识范围及深度;同时给学生播放现有的《人工智能》科学成果,让学生看到理论背后的实践;也可以播放科幻片,激发学生想象的翅膀从而有兴趣把人工智能作为将来深造的方向。《人工智能》是一门较新的课程,改进教学方法和手段不仅要靠教师,也应增加硬件设备的投入。如果人工智能能采用智能辅助教学系统或机器人辅助教学过程逼真、形象,一目了然,这样可大大提高学生的学习效率,尤其是提高学生的观察判断能力、发现问题和解决问题的能力。?
4 人工智能实践教学设计的探讨?
我们可以在教学过程中,适量开设一些实验和设计,提高学生的动手能力,并加深他们对理论知识的理解,降低理论的抽象度,提升理论的实用性。在近两年的教学过程中,我们会适量加入一些人工智能语言的教学过程。例如,在讲解了“野人与传教士过河”等问题后,我们可以让学生使用Visual Prolog或者C ?++?对算法进行实现;在讲解 TSP 问题的遗传算法解决案例后,指出编码方案、初始种群大小、进化代数、交叉率变异率等因素对求解结果的影响,并要求学生通过实验的方式来分析、理解这些问题,并提出“寻找更有利的解决方案”等问题。把学生的兴趣激发后,为解决这些问题,学生会在课外主动查阅相关文献、相互讨论以实现他们所设计的方案,这样既培养了学生善于钻研和勇于创新的精神又提高了学生的实践与创新能力。?
参考文献:?
[1] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1).?
中图分类号:G642 文献标识码:A
1 引言
人工智能(AI)是计算机科学的一个重要分支,同时也是计算机科学与技术专业的核心课程之一。本课程在介绍人工智能的基本概念、基本方法的基础上,主要是研究如何用计算机来模拟人类智能,即如何用计算机实现诸如问题求解、规划推理、模式识别、知识工程、自然语言处理、机器学习等只有人类才具备的“智能”,本课程重点阐述这些方法的一般性原理和基本思想,使得计算机能更好地为人类服务。
2 人工智能课程体系
人工智能主要研究传统人工智能的知识表示方法,其中包括状态空间法、问题归约法、谓词逻辑法、语义网络法、框架表示、剧本表示等;搜索推理技术主要包括盲目搜索、启发式搜索、消解原理、规则演绎算法和产生式系统等。
人工智能的研究课题主要包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。
经过笔者调研发现,目前在本科高校绝大部分将“人工智能”课程性质设为专业选修课或专业必修课,而在高职院校相关专业基本上不开设此课程,但是在具体实践教学过程中发现,在其它专业课程的教学过程中也会与人工智能理论或技术相结合,比如数据库技术、信息系统安全方面等领域,当讲到相关课程,同时会结合人工智能的理论,授课过程中发现大部分同学对该课程很有兴趣。
本课程在我校计算机科学与工程学院作为一门专业选修课开设,总学时数为:60(其中理论学时为36,实验学时为24),随着计算机技术的不断更新发展,人工智能的应用领域也变得越来越广,因此,人工智能(AI)这个学科已不再陌生,很多学生对其充满兴趣和好奇,所以在选课人数上远远超过其他选修课的人数,另外结合我校的实际情况,部分理论或实验又可以与农学、生命科学系等其它专业结合起来而应用。
3 人工智能理论教学实践
多年以来,人工智能获得很大的发展,已经引起众多学科和不同专业背景学者们的日益重视,成为一门广泛的交叉和前沿科学,但是直到目前为止人工智能至今仍尚无统一的定义,要给人工智能下一个准确、科学和严谨的定义尚有困难,其现有的一些定义多数是立足于各自的专业而定义的,存在片面性。
同时“人工智能”是一门交叉性的学科,其主要涉及到了控制论、语言学、信息论、神经生理学、心理学、数学、哲学等许多学科,所以该学科具有知识点多、涉及面广、内容抽象、不易理解、理论性强,与此同时需要学生具备较好的数学基础和较强的逻辑思维推理能力等特点,从而形成在教学实践中老师讲得吃力、学生听得吃力的局面。尽管在多年的研究和教学过程中笔者已积累了一些经验,但是对于如何把握好这门课程的特点,激发学生的学习兴趣和热情,帮助学生更好的理解和应用这门课程,目前仍然有很多问题需要研究和解决。
针对“人工智能”课程相关内容比较抽象,公式推导比较繁琐等特点,教师除了具有完善的教学大纲、合理的教学计划以及合适的教材外,还应该根据学校的实际硬件条件尽可能地选择多媒体教学手段来辅助教学,因此在实践教学中,笔者经常会配合教学内容,充分利用计算机、投影仪以及互联网的优势,结合多种教学方法与手段去组织整个教学过程。例如:在讲述搜索推理技术时,使用一些小的演示软件,将相关推理技术的理论通过动画的形式一步一步演示出来;而在讲专家系统相关理论知识时,尤其是各种类型的专家系统,利用互联网上的一些在线视频资源为例,给同学进行详细讲解,通过具体的案例来进行专项知识点的讲解及实现与应用;在自动规划这一章,给同学们选择演示发达国家目前研制的各种类型机器人,通过这些形象生动、行为举止高仿真的机器人来给学生讲理论,这样学生通过亲自观看视频资源,不仅可以拓宽知识面及视野,同时也可以及时地了解国际及国内机器人的发展水平及差距,不断纠正自己的错误观点并更新自己新的专业认识;另一个方面也可以同时激发学生们的学习兴趣热情和积极性,俗话说:“兴趣是学生最好的老师!”这一点在课堂实践教学中得到验证,得到广大同学的认可和赞同,整个教学课堂不再那么单调枯燥乏味,基本可以达到在娱乐轻松的氛围中学习专业知识,同时再整个教学过程中,师生互动机会增多,学生不再是被动地接受知识。
4 实验教学实践
4.1 客观存在问题
本校开设“人工智能”课程,主要是面向计算机专业的大学三年级的同学,同时作为一门专业选修课而设,理论课程为36学时,而实验学时24学时;与此同时经过对其它兄弟院校的调研发现,很多高校虽然也是设为专业选修课,但建议学生们都去学习这门新学科,从而为今后的专业知识及具体应用打下一定的基础;当然在调研中也发现,部分本科高校虽然开设了“人工智能”课程,但是仅是纯粹理论教学,从一定角度来讲,理论原理是前沿,但是由于太过于抽象,而且空洞、难以理解,多数同学反映学习效果并不理想,有关具体理论部分的具体实现仍然不解。
中图分类号:G642 文献标识码:B
1 引言
人工智能是计算机科学的一个重要分支,是当前科学技术发展中的一门前沿科学,它的出现及所取得的成就引起了人们的高度重视,被认为是计算机发展的一个根本目标。
人工智能课程作为计算机科学与技术专业课程体系中的核心课程之一,其地位正在随着该技术的不断发展和广泛应用而得到迅速提高。目前,国内外重点大学都非常重视该门课程的教学和研究,许多重点大学都有自己独立的人工智能研究所。
本文通过多年的人工智能教学实践,对人工智能教学的方法进行了初步的实践和探索。中央民族大学在人工智能课程建设和教学过程中,针对计算机学科的发展趋势,提出摈弃传统讲、学、考模式,注重学生能力培养的措施。在教学和实践过程中,不断进行探索,既从计算机学科本科的教学理念出发,从人工智能这门学科特点出发,以计算机学科分支的角度认知人工智能,组织教材的知识架构并进行教学。用计算机学科的观点分析人工智能的基本原理与方法时,重点强调的是这些基本原理与方法与其他的计算机分支的共同点和不同点。共同点是强调计算机学科的本质,不同点是强调人工智能的本质。本文就针对我校人工智能课程教学的一些基本问题加以初步总结。
2 从计算机学科分支的角度认知人工智能
人工智能属于计算机科学分支的学科,同时又是一门涉及控制论、信息论、语言学、神经生理学、数学、哲学等多学科交叉的课程。我国高等院校计算机学科的本科教学所设置的人工智能课程一般只有40课时左右,以什么角度组织教材内容,提高教学效果,才能使学生较容易地理解和掌握人工智能的原理与技术,是我们值得探索的问题。
人工智能处理的对象是知识,知识处理则需采用知识表示。因此,若以计算机分支的角度也就是用计算机学科的观点看待人工智能,人工智能课程的教学内容应以知识为主线,以知识表示和搜索为基石进行组织。反映到实际教学中,就是人工智能的各个分支的介绍,这包括知识库系统、自然语言理解、规划、机器人等。总之,教学内容可分成两个部分,第一部分是基础理论和基本方法,包括:逻辑表示与归结推理方法、搜索原理,知识表示(包括产生式系统、语义网络、框架)、推理(包括不确定性推理、非单调推理)、机器学习。第二部分是实用技术,包括知识库系统、高级搜索、自然语言理解。
3 优化和更新教学内容、加强双语教学
人工智能作为一门新学科,在1988年前,国内外均未见有教学大纲和教材,开设本课程面临的首要问题就是确定教学内容,包括人工智能的知识表示和推理以及人工智能的应用两个部分。前者是人工智能的重要基础,后者讨论几种人工智能应用系统,包括专家系统、机器学习、自动规划和机器视觉等系统。这些内容只是给出了人工智能课程的初步框架。
随着人工智能研究的进一步深入, 到20世纪90年代中期,人工智能也从符号(逻辑)主义一枝独秀发展到符号主义、连接主义和行为主义多家争鸣的新局面, 模糊计算和神经计算作为新内容列入到人工智能课程,充实了人工智能课程的内容。进入21世纪以来,人工智能学科又有了新的发展。为了及时反映人工智能研究和学科的最新进展,我们及时对教学内容进一步优化和更新:把人工智能分为基础部分和扩展应用部分。
在教学和实践过程中,考虑到本课程的多学科交叉性以及相关信息学科的快速发展, 在目前高校提倡双语教学的环境下,将《人工智能》教材逐步改为全英语教材,这样可以更快地掌握学科的发展动态, 掌握最先进的技术, 与国际发展趋势接轨。Nils J.Nilsson教授所著的《人工智能》教材是美国Stanford大学计算机系本科教材,该教材体系比较符合学生的认知规律,便于学生接受、理解、掌握和巩固所学知识;同时这本书内容丰富、取材新颖,适合作为该课程的英文教材。
4 注重案例教学、改革教学方法
案例教学首创于哈佛大学商学院,在经贸、管理、法学等学科领域的相关专业得到应用并取得显著绩效,然而目前工科专业还较少运用案例教学方法。人工智能的每一部分内容均包含大量概念,内容抽象,算法复杂,学生往往被动“听讲”;并且涉及很多的数理逻辑知识,有些显得难以理解,并且往往让学生感到比较枯燥,学生的学习兴趣就渐渐淡薄,难以获得预期的教学效果。鉴于这一现实问题,我们将案例教学方法引入到该课程的教学之中。
例如在逻辑推理技术和搜索技术这两方面的教学过程中,我们使用参考教材《人工智能:一种现代方法》,并利用其中基于JAVA的教学开发工具包AIMA进行案例设计和实验教学,在教学过程中结合AIMA中的案例来讲解,使比较枯燥的知识以有效、实用和具体的形式表现出来,做到理论与实践相结合。在讲解搜索技术时,以“八皇后”问题为案例,结合AIMA中的设计实现,以讲解和讨论相结合的方式,学习盲目搜索、启发式搜索等算法,使学生不仅能理解状态空间的产生方法,而且能设计算法、实现算法,提高了学生的学习兴趣和实践能力。在学习神经网络、模糊逻辑、进化计算等方面的内容时,我们主要借助于Matlab提供的相关工具箱。
5 加强教学队伍建设、改革考核方法
建立一支爱岗敬业、富有战斗力的教学队伍是出色完成教学任务和提高课程教学质量的根本保证。教学人才资源是教学的第一资源。在学校有关部门的领导和学院的支持下,我们组成一支知识结构和年龄比较合理的教师队伍。
1人工智能及大数据的概念
1.1人工智能
人工智能是一门利用计算机程序模拟人类智能的科学,其应用领域十分广泛,例如机器人、模式识别及专家系统等。人工智能的高科技产品,不仅实现了对人类思维的模拟,在某些方面还超过了人类。
1.2大数据
大数据是指海量信息的集合,一般用常规软件工具无法对其进行有效的采集、存储和处理,需要借助具有超强洞察力的大数据技术对其进行有效的采集、存储、处理、分析和共享。大数据技术能够有效地进行超大规模的并行处理,能够有效地处理结构化及半结构化的数据,具有较强的数据挖掘能力及分析决策能力。
2人工智能及大数据对软件技术专业人才的需求特点
2.1知识更新能力
人工智能及大数据技术日新月异,需要软件专业技术专业人才具有较强的知识更新能力,较强的自主学习能力,以及较高的技术应用能力。但目前相当一部分软件技术专业的大学生的自主学习能力不高,知识更新能力不强,亟需针对人工智能及大数据对软件技术专业人才的需求特点改进培养方案,增加相关课程,培养学生对新知识的理解和掌握尤为重要。
2.2创新思维能力
人工智能及大数据时代下,需要软件技术专业人才具备较强的适应创新能力,较强的开拓思维能力,以及较强的团队协作能力。但目前相当一部分软件技术专业的大学生的创新思维能力较差,新知识更新缺乏主动性,迫切行,学习意识不强。亟需针对人工智能及大数据对软件技术专业人才的需求特点创新改革培养方案,确定切实可行培养策略是学科发展的需要和任务。
2.3大数据分析能力
人工智能及大数据对人才的大数据分析能力要求较高,主要包括数据采集、数据整理、数据描述、数据统计分析和深度学习等诸多方面的能力。但目前相当一部分软件技术专业的大学生的大数据分析能力不够,不能很好地进行数据采集、存储、整理、描述、统计分析和归纳总结,亟需针对人工智能及大数据对软件技术专业人才的需求特点创新培养体系。
2.4软件开发及测试能力
人工智能及大数据对人才的软件开发及测试能力要求较高,主要包括软件分析、软件设计、软件实现和软件测试等方面的能力。但目前相当一部分软件技术专业的大学生的软件开发及测试能力较差,不能够有效地开展软件的规划、分析、设计、实现与测试等环节,亟需针对人工智能及大数据对软件技术专业人才的需求特点提升学生的软件开发与测试的实践能力。
3建设策略
3.1转变教学理念,顺应人工智能及大数据时展要求
传统的教学理念已经不能适应人工智能及大数据时代的要求,亟需转变教学理念,从而适应人工智能及大数据时代的要求,进而提升软件技术专业人才的培养质量。在人工智能及大数据背景下,学校应深入分析人工智能及大数据对软件技术专业人才的需求特点,从而有针对性的制定培养目标、培养任务和培养方案。在制定培养目标时,应着重考虑软件技术专业人才在人工智能及大数据时代应具备的能力素质。在制定培养任务时,应着重参考人工智能及大数据相关岗位的岗位要求。在制定培养方案时,应坚持以学生为主体,以学生为本,突出知识更新能力、自主学习能力、开拓创新能力、团队协作能力、大数据分析能力和软件开发及测试能力的培养。
3.2引导学生利用现代化、智能化的网络平台进行自主学习
为了更好地适应人工智能及大数据对软件技术专业人才的需求,应引导学生利用现代化、网络化和智能化的Web平台进行自主学习,从而提升学生的知识更新能力、开拓创新能力、解决问题的能力和团队协作能力。首先,在人工智能及大数据背景下,网络上涌现了大量的人工智能及大数据相关的学习资源,但这些网络资源存在良莠不齐的现象,因此教师应该引导学生如何搜索、鉴别和使用这些网络学习资源。然后,教师可以引导学生自由分组开展人工智能及大数据相关的学习,通过兴趣小组的方式激发学生对人工智能及大数据的学习热情,提升学生的自主学习能力,提升在线学习的效率。最后,教师可以自建教学网站,对网络资源进行筛选和优化,使学生能够更好地进行网络学习。
3.3构建大数据分析课程体系,提升学生的大数据分析能力
1956年,在美国Dartmouth大学,由数学家J.McCarthy和他的三位朋友M.Minsky、N.Lochester和C.Shannon共同发起一个历时两个月的夏季学术讨论班,他们在此讨论班上第一次正式使用了人工智能(Artificial Intelligence)这一术语。人工智能是一门多学科交叉的课程,涉及计算机科学、数学、控制论、信息论、神经生理学、心理学、哲学及语言学等多个学科,是新理论和新技术不断出现的综合性学科。当前,人工智能领域加强了从人类智能与生命现象中汲取养分的趋势,加快了向分布式系统与复杂系统靠拢的步伐,智能化的应用更为深入,影响更为广泛,其发展已对人类的经济、社会、文化等方面产生了深远影响[1]。
1人工智能导论课程特点
人工智能导论是人工智能领域的引导性课程,介绍人工智能的基本理论、方法和技术,目的是使学生了解和掌握人工智能的基本概念和方法,为进一步学习奠定基础。人工智能是计算机科学与技术学科一门重要的基础课程,需要相关课程作支撑。离散数学、概率论与数理统计等课程是其数学基础,数据结构、程序设计基础、算法分析与设计等课程则为人工智能中知识表示、逻辑推理和问题求解提供了设计与实现手段。与其他软件课程相比,人工智能课程有鲜明的特点,主要表现在思想方法上强调启发性、算法上强调不确定性。同时,由于人工智能是一个新思想和新技术层出不穷的开拓性领域,因此其对学生的训练是鼓励创新的,具有其他课程不可替代的作用。
人工智能导论是计算机相关专业的必修课,在许多信息类相关的本科教学中也有开设,一般开设在第六或者第七学期。我国目前本科教育的定位是专才教育,培养某方面的专业人才。完成公共基础课程和部分专业基础课程的学习之后,本科高年级学生应该了解本专业的应用领域和发展前景,因此在教学过程中要注意内容的专业性和应用性。由于本科阶段学生缺乏科研意识,初步的科研训练设置在第八学期,即所有课程学习完毕之后的毕业设计,而人工智能课程强调科研性,因此教学难度较大,由此带来的最直接后果就是学生学习兴趣不高。同时,对有志于读研的学生而言,本科阶段的学业也是研究生教育的起点,在教学过程中要适时的进行科研引导,提升学生对科学研究的兴趣,为研究生阶段打下基础。可见,圆满完成人工智能导论课程这一教学任务是重要且极具挑战性的。
2教学内容安排
人工智能的研究和应用领域非常广泛,包括问题求解、机器学习、自然语言理解、专家系统、模式识别、计算机视觉、机器人学、搏弈、计算智能、人工生命自动定理证明、自动程序设计、智能控制、智能检索、智能调度与指挥、智能决策支持系统、人工神经网络、数据挖掘和知识发现等。人工智能导论旨在为这些具体领域的研究提供引导和基础保障。
人工智能导论课程涵盖内容较多,因此需要明确“精讲”和“泛讲”的内容,以使教师和学生在教学活动中都有所侧重。当然,首先应和学生说明,泛讲并不代表内容不重要,只是由于课程性质和课时的关系,暂时不作深入探讨。日后如有需要,可在此基础上进一步学习和研究。结合当前人工智能学科的发展状况,根据教学大纲和作者的教学经验,对人工智能导论课程教学内容的精讲和泛讲安排如表1所示。
3提升学生学习兴趣的教学方法
3.1穿插背景故事
为激发学习积极性,针对学生喜欢听奇闻轶事、想象力丰富的心理特点,通过讲述一些与教学内容有关的故事或者趣事来吸引其注意力,辅助思维并丰富联想,使学生在愉悦中完成学习[2]。下面列举几个我们在课程教学中用到的背景故事,通过这些故事,不但传授了知识,也活跃了课堂气氛。
1) 人类智能的计算机模拟与人机大战。
讲授人类智能的计算机模拟时,可以给学生简述一下IBM公司的超级电脑和国际象棋世界冠军卡斯帕罗夫之间的人机大战,以促进学生对人类智能和人工智能的进一步思考。北京时间1997年5月12日凌晨4点50分,在美国纽约公平大厦,当IBM公司的“深蓝”超级电脑将棋盘上的一个兵走到C4的位置上时,国际象棋世界冠军卡斯帕罗夫对“深蓝”的人机大战落下帷幕,“深蓝” 以3.5U2.5的总比分战胜卡斯帕罗夫。2003年1月26日至2月7日,卡斯帕罗夫与深蓝的升级版“小深”又进行了一场人机大战,先后进行了6局比赛,最终卡斯帕罗夫以1胜1负4平的结果和“小深”握手言和。这也表明了人工智能和人类智能之间的较量还将持续下去。
2) 问题规约法与老和尚说教。
问题规约法是从要解决的问题出发逆向推理,建立子问题以及子问题的子问题,直到最后把初始问题归约为一个本原问题集合。本原问题指不能再分解或变换且直接可解的子问题。可见,问题规约的本质是递归的思想。此时,可以给学生简述我们小时候就听说过的老和尚说教的故事,即“从前有座山,山上有座庙,庙里有个老和尚,老和尚对小和尚说,从前有座山……”。
3) 模糊理论与秃头悖论。
模糊推理是一种重要的不确定性推理方式,是指基于模糊理论进行的推理。讲授模糊理论时,可以先讲一下秃头悖论让学生讨论。一个人有10万根头发,肯定不能算秃头,不是秃头的人,掉了一头发,仍然不是秃头,按照这个道理,让一个不是秃头的人一根一根地减少头发,就得出一条结论,即没有一根头发的光头也不是秃头!秃头悖论的出现源于在严格的逻辑推理中使用了“秃头”这一模糊概念,因此需要以模糊逻辑代替传统的二值逻辑解决该问题。
3.2课堂辩论和多媒体教学
人工智能从其诞生之日起就充满争议,各种学派的争论使得人工智能的发展更趋完善,加快了其纵深发展。目前,人工智能的争论主要有两方面,即研究方法的争论和技术路线的争论。前者争论的主要问题有人工智能是否得模拟人的智能;对结构模拟和行为模拟是否可以分离研究;对感知、思维和行为是否可分离研究;对认知与学习以及逻辑思维和形象思维等问题是否可以分离研究;是否有必要建立人工智能的统一理论体系。后者争论的主要问题是沿着什么样的技术路线和策略来发展人工智能。
在课堂教学中,可以充分利用人工智能中存在的争论较多这一特点,针对相关议题组织课堂辩论,如可用议题“机器的反叛――机器的智能会超越人类吗?”。让学生在图书馆或者从网上查阅相关资料,明确自己的论点并准备证据材料,并在课堂上进行辩论。这类辩论无所谓输赢,旨在通过这种活动,增进学生思考[3]。教学中,还可以充分利用多媒体教学的特点,如让学生观摩电影《终结者》系列、《人工智能》、《黑客帝国》等,增强学生对人工智能的直观感受,提高课堂教学效果[4]。
3.3应用实例分析
普遍而言,本科学生对单纯的理论讲解不太感兴趣,因此在教学过程中,适当增加一些实验和设计,提高学生分析问题的能力和实际动手能力。比如,讲解知识的产生式表示法时,给出产生式的概念和基本表示形式之后,可以通过“野人与传教士过河”问题来说明产生式表示法的具体应用过程;讲解计算智能的进化计算部分时,给出进化算法的几种具体形式和算法流程之后,可以通过中国旅行商问题(CTSP)来说明算法求解问题的过程。教师在教学过程中,可以根据需要,选择一些合适的应用实例进行分析。通过这些实例,既能加深学生对知识的理解,又能增加学习的兴趣。下面给出两个实例的简单描述。
1) 产生式表示法求解“野人与传教士过河”问题。
问题:传教士和野人各N人过河,现只有一条船,传教士和野人都会划船,船一次只能载k人,船上野人多于传教士时野人就会吃掉传教士,问如何安全过河?(不失一般性,以N=3,k=2为例求解)。
求解简述:设综合数据库中状态用三元组(m, c, b)表示,其中m、c、b分别表示传教士、野人和船的数目,则有:
0≤m, c≤3, b ∈{0, 1}
以左岸为参照点,则初始状态和目标状态分别为(3,3,1)和(0,0,0)。据此,可以给出一条产生式规则如下:
IF (m, c, 1) THEN (m-1, c, 0)
以此类推,把所有可行的规则都求出之后,就可按照规则集和控制策略得到问题的解。
2) 遗传算法求解31个城市的CTSP问题[5]。
问题:给定有限个城市的集合C={c1,c2, …,cm}及每两个城市之间的距离矩阵D=[dij]m×m,其中m∈N,dij=d(ci, cj)∈Z+,ci、 cj∈C,1≤i、j≤m,求出满足的城市序列cπ(1)、cπ(2)、…、cπ(m),其中π(1),π(2),…,π(m)是1、2、…、m的一个全排列。我们以CTSP问题为例,即求解中国31个城市之间最短巡回路线的问题。
求解简述:路径表示直接使用城市在路径中的相对位置,如有编号分别为1、2、3、4、5的5个城市的一条路径4-1-2-5-3,用路径表示方法直接可写为(4 1 2 5 3)。适应度函数值用路径的实际长度表示。交叉算子采用次序杂交,即选择父体的两杂交点,交换相应的段,其它城市则保持在父体中的相应次序。变异算子采用倒位算子,即随机选择两个位置,然后将它们之间的城市反序。通过运用遗传算法求解,可得最优解为15 404 km,对应的巡回路线为“北京―呼和浩特―太原―石家庄―郑州―西安―银川―兰州―西宁―乌鲁木齐―拉萨―成都―昆明―贵阳―南宁―海口―广州―长沙―武汉―南昌―福州―台北―杭州―上海―南京―合肥―济南―天津―沈阳―长春―哈尔滨―北京”。实例讲解完成后,可要求学生采用相同或者不同的方案自己去实现一下问题的求解过程。
4结语
人工智能是计算机科学与技术专业的一门核心课程,同时也是一门交叉学科,涉及面广,理论性强,教学难度较大,学生的学习兴趣有待提高。本文作者根据自己在人工智能导论课程中的教学实践和课程特点,明确了教学中的精讲内容和泛讲内容,总结了三种提高学生学习兴趣的教学方法,并给出相应的实例说明,旨在为本门课程的教师提供教学参考。
参考文献:
[1] 蔡自兴,徐光v. 人工智能及其应用(本科生用书)[M]. 北京:清华大学出版社,2003:288-296.
[2] 薛占熬,齐歌,杜浩翠,等. 离散数学的课堂导入法研究[J]. 计算机教育,2010(8):95-99.
[3] 徐新黎,王万良,杨旭华. “人工智能导论”课程的教学与实践改革探索[J]. 计算机教育,2009(11):129-132.
[4] 李春贵,王萌,何春华. 基于案例教学的“人工智能”教学的实践与探索[J]. 计算机教育,2008(9):53-54.
[5] 杨利英,覃征,贺升平,等. 改进的演化近似算法求解TSP问题[J]. 微电子学与计算机,2004,21(6):126-128.
Teaching Methods for Promoting Learning Interests in Introduction to Artificial Intelligence
YANG Liying
(School of Computer Science, Xidian University, Xi’An 710071, China)
知识表示与知识推理是智能信息处理的基础。从人工智能的角度看,知识是构成智能的基础,人类的智能行为依赖于利用已有的知识进行分析、猜测、判断和预测等。当人们希望计算机具有智能行为时,首先需要在计算机上表达人类的知识,然后再告诉计算机如何像人一样地利用这些知识。
自从人工智能领域诞生以来,知识表示与知识推理就一直是其中最为重要的子领域。经过五十多年的发展,知识表示与知识推理领域的许多研究内容、研究方法和研究成果已经深深渗入到计算机科学,进而对计算机学科的发展产生了深远的影响。例如,在C++、Java等面向对象程序设计语言中,“继承”这一最为核心的技术就来源于知识表示与知识推理。再如,在软件自动化领域,许多程序规格语言和程序验证技术都借鉴了知识表示与知识推理领域的Prolog语言等研究成果。从工程开发的角度看,专家系统、智能搜索引擎、智能控制系统、智能诊断系统、自动规划系统等具有所谓智能特征的系统都或多或少地依赖于知识表示与知识推理技术。因此,对于计算机专业的学生来说,学习知识表示与知识推理方面的课程,对于今后在相关领域从事系统开发和科学研究都大有裨益。
在ACM与IEEE-CS联合攻关组制订的计算教程CC2001(Computing Curricula 2001)中,知识表示与知识推理得到了高度重视。CC2001给出的计算机科学知识体由14个知识领域组成:在其中的IS(Intelligent Systems)知识领域中,关于知识表示与知识推理的内容占据了10个知识单元中的2个,即知识单元“(Is3)知识表示与推理”以及知识单元“(IS5)高级知识表示与推理”。在ACM和IEEE-CS进一步修订后的计算机科学教程CS2008(Computer Science Curriculum 2008)中,知识表示与知识推理同样得到了高度重视。此外,在我国高等学校计算机科学与技术教学指导委员会制定的计算机专业规范中,上述的IS3和IS5两个知识单元被全部包括到计算机科学专业的核心课程“人工智能”中。然而,据我们了解,由于“人工智能”在许多高校仅仅作为专业任选课开设,使得计算机相关专业的许多学生无法接触到知识表示与知识推理方面的内容。与此同时,由于课时数限制及没有得到重视等因素,实际开设的“人工智能”课程(包括本科生课程和研究生课程)往往难以覆盖CC2001在知识单元IS3和IS5中列出的各个知识点。
实际上,经过五十多年的发展,知识表示与知识推理领域已经沉淀出一系列基本的方法、理论和技术;这些方法、理论和技术在CC2001的知识单元IS3和IS5中基本上都以知识点的形式列举了出来。作为计算机专业的教育工作者,我们有责任将这些体现了几代人智慧结晶的知识介绍给学生。另一方面,从研究者的角度来看,知识表示与知识推理是一个非常活跃的研究领域;尤其是随着Web技术的发展以及Web科学的出现,知识表示与知识推理将在计算机科学中扮演越来越重要的角色。面对万维网这个全球最大的分布式信息库,如何让计算机对其中海量的数据和信息进行分析、推理和管理,进而为人类提供方便的知识服务,是目前信息技术领域面临的一个重大问题。针对这个问题,国内外研究者基本上都是从人工智能的角度寻求解决思路;近年来成为研究热点的语义Web更是完全建立在知识表示与知识推理的基础上。因此,从开拓学生思维以及介绍研究与技术前沿的角度来看,也非常有必要向学生讲授知识表示与知识推理的相关内容。
基于以上认识,我们为计算机软件与理论专业和计算机应用技术专业一年级的硕士研究生开设了一门32课时的选修课程,以CC2001和CS2008列出的知识单元为核心,对知识表示与知识推理的相关内容进行教学。本文对教学设计和教学实践中遇到的主要问题进行分析,针对这些问题给出相应的解决对策,并对我们获得的经验和教训进行总结。
1 “知识表示与知识推理”知识体的教学设计
自上世纪九十年代以来,国内外许多高校就将“知识表示与知识推理”作为一门课程,面向研究生或高年级的本科生开设。其中比较著名的包括加拿大多伦多大学Hector J.Levesque教授开设的知识表示课程,美国斯坦福大学Leom Morgenstem教授开设的知识表示课程,英国曼彻斯特大学Ulrike Sattler教授等讲授的知识表示和推理课程,中山大学刘咏梅教授讲授的知识表示和推理课程等。但是,由于没有统一的课程设置标准,这些课程讲授的知识点都不尽相同。2000年,Leom Morgenstem和Richmond H.Thomason总结了开设知识表示与知识推理课程时面临的挑战,提出了相应的解决思路。其中,针对该课程缺乏统一的教学知识体的情况,他们设计了一个持续14周、每周2次课的教学大纲。在文献[5]中,Leora Morgenstem进一步修订了之前提出的教学大纲,建议在其中增加语义Web及Web本体语言OWL等内容。
尽管目前各高校开设的知识表示与知识推理课程的课程大纲仍然不尽相同,但比较可喜的是,对知识表示与知识推理的教学在CC2001计算教程中得到了高度重视。CC2001分别在“知识表示与推理”和“高级知识表示与推理”两个知识单元中列出了关于知识表示与知识推理的教学内容。知识单元“知识表示与推理”由以下知识点组成:命题逻辑和谓词逻辑回顾,归结原理与定理证明,非单调推理,概率推理,贝叶斯定理。知识单元“高级知识表示与推理”由以下知识点组成:结构化知识表示(包括对象与框架、描述逻辑和继承系统),非单调推理(包括非经典逻辑、缺省推理、信念修正、偏好逻辑、知识源的集成、冲突信念的聚合),对动作和变化的推理(包括情景演算、事件演算和分枝问题),时态和空间推理,非确定性推理(包括概率推理、贝叶斯网络、粗糙集和可能性理论、决策理论),针对诊断的知识表示与定性知识表示。在CC2001的基础上,CS2008在知识单元“知识表示与推理”中增加了合一与提升、前向链接、反向链接以及归结等知识点;在知识单元“高级知识表示与推理”中增加了本体工程和语义网络两个 知识点。
以CC2001和CS2008列出的知识点为基础,在综合考察了国内外相关课程的开设情况之后,我们对“知识表示与知识推理”课程的教学内容及相应的学时分配设计如下。
1)概述(2学时)。介绍知识表示与知识推理领域的发展历史、现状和前景:讲授知识表示的基本思路和基本原理;介绍知识表示方法和技术的典型应用:列举典型的采用了知识表示技术的系统,与没有采用知识表示技术的系统进行比较分析。
2)基于一阶谓词逻辑的知识表示和推理(4学时)。讲授一阶谓词逻辑的语法、语义和语用;通过例子讲授如何应用一阶谓词逻辑进行知识表示;讲授如何应用消解原理进行知识推理;讲授如何应用Tableau算法进行知识推理;分析一阶谓词逻辑存在的局限。
3)Horn子句逻辑与产生式系统(2学时)。讲解Horn子句及其过程解释;介绍SLD归结以及分别采用反向链和正向链的推理过程;通过例子讲授如何应用Horn子句逻辑进行知识表示和推理;对Prolog语言进行简单介绍;通过例子介绍如何应用产生式系统进行知识表示和推理。
4)结构化知识表示(6学时)。介绍对象与框架,介绍基本的框架形式系统:介绍语义网络,对推理过程中的继承机制进行介绍。介绍描述逻辑家族的研究历史和发展现状;以逻辑系统ALC为例,讲解描述逻辑的语法和语义;通过例子讲授如何应用描述逻辑进行知识表示;讲授如何应用Tableau算法对描述逻辑刻画的知识进行推理。
5)非单调知识表示和推理(4学时)。介绍非单调性推理的研究历史;讲解封闭世界假设与开放世界假设;讲解缺省推理和限定推理;对自认知逻辑、偏好逻辑和真值维持系统进行介绍;对信念修正、知识源的集成以及冲突信念的聚合进行介绍。
6)非确定知识表示和推理(4学时)。对模糊逻辑进行介绍;讲授概率推理和主观贝叶斯方法;对粗糙集、可能性理论和决策理论进行介绍。
7)解释与诊断(2学时)。讲授反绎推理的基本思路,将其与演绎推理和归纳推理进行比较分析;以一个电路系统为例,讲授如何在知识表示的基础上采用反绎推理进行故障诊断。
8)动作与规划(4学时)。介绍动作与规划领域的研究历史和发展现状;讲授如何在STRIPS系统中对动作进行刻画以及如何进行规划求解:讲授如何应用情景演算和事件演算对动作进行刻画、推理、及规划求解;对框架问题、条件问题和分枝问题进行介绍;对规划语言PDDL进行介绍。
9)时态和空间推理(2学时)。对时间点/时间段、离散/连续、有限/无限、线性/分支等表示时态信息的不同方式进行介绍;对Allen的区间代数理论进行介绍;对线性时态逻辑和分支时态逻辑进行介绍;对基于点/基于区域、离散/连续、有限/无限、同维/混合维等表示空间信息的不同方式进行介绍;对区域连接演算RCC进行介绍;对时态与空间推理的结合进行简单介绍。
10)语义Web和本体工程(2学时)。介绍语义Web的基本思想、技术现状和发展趋势;讲授语义Web的层次模型以及各个层次的目标和功能;对资源描述框架RDF、Web本体语言OWL、Web规则标记语言RIF、Web查询语言SPARQL等进行介绍。对本体的构建、管理和维护进行介绍。
上述教学内容的基本特点是覆盖了CC2001和CS2008列出的关于知识表示与推理的所有知识点。此外,我们将目前作为计算机科学和人工智能领域研究热点的语义Web等内容引入了课堂教学,不仅可以将相关研究前沿展示在学生面前,而且还可以让学生更加深刻地体会学习知识表示与知识推理的价值,进一步激发他们的学习热情。另一方面,上述教学内容存在的一个缺陷是内容过多。由于受到课时数的限制,部分内容在讲授时不能充分展开,留给学生课堂练习和讨论的时间不充裕。
2 教学实践中的主要问题及对策
在围绕“知识表示与知识推理”知识体开展教学实践时,我们遇到的问题主要来自以下几个方面:教师和学生对“人工智能”课程以及其中的“知识表示与知识推理”知识体不重视,缺乏合适的教材,学生缺乏必要的基础知识。下面对这些问题进行逐一分析,对我们采取的对策进行相应介绍。
2.1 师生对“人工智能”课程不重视
许多教师和学生对“人工智能”课程不够重视,甚至存在偏见。我们觉得,这种现状很大程度上是由人工智能自身的发展历程造成的。人工智能领域刚诞生时就被赋予过高的期望;早期的研究者也过于乐观地给出了一些不切实际的承诺。由于不能在短期内实现过高的目标和兑现相应的承诺,使人工智能领域在上世纪80年代末90年代初一度跌入低谷,甚至达到了声名狼藉的地步。这一特殊的发展历程使得一部分对人工智能了解不多的教师和学生产生误解,认为人工智能是一个比较务虚的领域。这种误解甚至影响到“人工智能”课程的开设。目前,在许多高校计算机相关专业的课程设置中,“人工智能”往往只作为选修课程开设,没有得到教师和学生的普遍重视。
实际上,从信息技术发展规律的角度来看,人工智能的上述发展历程是很正常的。根据市场权威研究机构Gartner给出的“技术成熟度曲线”(hype cycle)理论,一项新的IT技术在产生之后,一般先是默默无闻地奋力发展几年,然后会由于被大家寄予很高的期望而迅速火爆起来,接着会因为没能兑现过高的承诺而跌入谷底,最后会再次崛起并由于过硬的成就而被大众普遍接受。人工智能已经经历了从默默无闻到迅速火爆再到跌入谷底的发展过程,目前正处于再次崛起的阶段,并且将通过不断取得的成就而被大众普遍接受。
人工智能的教学在CC2001和CS2008中得到了高度重视。CC2001给出的计算机科学知识体由14个知识领域组成,作为其中的知识领域之一,智能系统(即人工智能)与离散结构、程序设计、操作系统、计算机体系结构等已经得到普遍重视的知识领域具有了相同的地位。在我国高等学校计算机科学与技术教学指导委员会制定的计算机专业规范中,也将“人工智能”作为了计算机科学专业的核心课程。但是,对人工智能相关知识的传播需要一个长期的过程,仍然需要广大科研和教育工作者的不懈努力。
2.2 师生对“知识表示与知识推理”知识体不重视
即便部分教师和学生认识到人工智能知识领域的重要性,但对于其中的“知识表示与知识推理”知识体仍然不够重视,认为没有必要专门通过一门课程进行教学。
针对这个问题,我们可以对人工智能领域的发展历程作进一步考察。我们知道,人工智能领域的诞生就是从知识表示和知识推理开始的。在1956年标志着人工智能诞生的Dartmouth会议上,Herbert Simon和Allen Newell展示的“逻辑理论家”就依赖于知识表示和知识推理。在此之后的五十多年中,知识表示与知识推理就一直是人工智能中最为重要的子领域。相 应的一个佐证是,1966年到2009年期间,在获得图灵奖的56名科学家中,Marvin Minsky、John Mccarthy、Herbert Simon、Allen Newell、Edward Feigenbaum和Raj Reddy等6名科学家都在知识表示与知识推理领域取得了开创性的研究成果。
知识表示与知识推理的重要性在CC2001和CS2008中同样得到了体现。CC2001给出的“智能系统”知识领域由以下10个知识单元组成:智能系统中的基本问题、搜索与约束求解、知识表示与推理、高级搜索、高级知识表示与推理、智能主体、自然语言处理、机器学习与神经网络、人工智能规划系统、机器人;C$2008在CC200I的基础上增加了智能感知这个知识单元。其中,关于知识表示和知识推理的教学内容不仅占据了两个知识单元,而且在智能主体、人工智能规划系统、机器人等知识单元中也占据了相应的多个知识点的位置。由于32课时的人工智能选修课程通常只能对上述知识单元作一个概要性的介绍,对于想进一步深入学习的学生,在有条件的情况下,我们完全有必要开设一门关于“知识表示与知识推理”的课程。另外,从上一节给出的教学设计可以看出,如果要覆盖CC2001和CS2008给出的关于知识表示与知识推理的所有知识点,一门32课时的课程在时间上还很不够用。因此,基于以上分析,我们希望“知识表示与知识推理”的教学首先能够得到相关教师的认可和重视,然后通过课程设置等途径逐渐吸引学生的关注,并在教学过程中激发起学生的学习兴趣和热情。
2.3 缺少合适的教材
尽管CC2001和CS2008详细地列出了关于知识表示与知识推理的主要知识点,但是,据我们所知,目前还没有出现完全覆盖这些知识点的合适教材,而中文的相关教材更是缺乏。
在参考了多方面的资料之后,我们选择了Ronald Brachman和Hector Levesque撰写的《Knowledge Representation and Reasoning》作为教材。Ronald Brachman和Hector Levesque都是知识表示与知识推理领域的著名学者。其中,Ronald Brachman于1977年在哈佛大学攻读博士学位时提出了KL-ONE系统,开创了目前成为研究热点的描述逻辑领域,之后于2003年担任了美国人工智能学会的主席,目前是ACM院士、雅虎全球研究运营副总裁。Hector Levesque在知识表示领域也做出了许多开创性的研究成果,曾于2001年担任人工智能顶级会议IJCAI的主席,于2006年当选加拿大皇家学会会士。除了时态和空间推理以及本体工程这两个知识点之外,CC2001和CS2008中列出的其他关于知识表示与知识推理的知识点,在《Knowledge Representation and Reasoning》中都基本上得到了体现。另外,为了在课程中向学生介绍语义Web方面的知识,我们选择了Grigoris Antoniou和Frank van Harmelen撰写的《A Semantic Web Primer》作为参考书目。
2.4 学生缺乏必需的基础知识
知识表示与知识推理的核心思想是采用形式语言(尤其是逻辑语言)对知识进行刻画和推理,因此要求学生在学习该课程前具有扎实的数理逻辑基础知识。
尽管数理逻辑对于整个计算机学科来说具有非常重要的作用,但在目前计算机相关专业的课程设置中,数理逻辑往往只作为离散数学课程的一个部分进行教学,在课时数量上非常有限。此外,从教材的角度来看,大部分离散数学教材的数理逻辑部分主要介绍命题逻辑的相关知识,而且只介绍命题逻辑联结词、范式、等值演算、自然推理系统等最基本的内容;对一阶谓词逻辑以及命题逻辑中更为深入的内容介绍得很少,甚至不介绍。这些内容对于学习知识表示与知识推理知识体来说远远不够。例如,根据我们在讲授“知识表示与知识推理”之前的调查,许多研究生对于一阶谓词逻辑的语法与语义等基本概念都还比较模糊,对于消解原理、Tableau方法、可满足性问题等内容更是没有接触过。
针对上述问题,除了原计划关于一阶谓词逻辑知识表示的4个课时之外,我们临时增加了2个课时的课堂教学,为学生补充命题逻辑的语法和语义、公式可满足性问题、Tableau判定算法、基于消解原理的判定算法等内容。由于受到课时的限制,许多重要的结论及其证明过程无法在课堂上详细阐述。
值得一提的是,由于研究课题的需要,我们组织部分研究生一起学习了John Bell和Moshe Machover撰写的著名教材《A Course in Mathematical Logic》。在学习这本教材时,我们将研究生分为三个小组,让各个小组自学该教材,对其中的引理、定理以及问题(Problem)进行证明或求解,然后在每周一次的学习班上使用黑板讲解他们的证明或求解过程。在3个月的时间里,将这本教材中的第一章和第二章学完后,这些研究生的数理逻辑知识明显上了一个台阶。在之后学习知识表示与知识推理的过程中,这部分研究生的学习效果也明显好得多。在今后的教学中,我们希望计算机相关专业的研究生能够先学习一门数理逻辑方面的课程,然后再学习知识表示与知识推理课程。
人工智能l展将经历三个阶段:第一个阶段是逻辑智能。该阶段智能以模拟人的逻辑思维为主,可凭借强大的记忆力、存储力在完全信息下执行单一领域的任务并达到顶尖水平。阿尔法狗(AlphaGo)就是典型的例子;第二阶段是抽象智能,该阶段智能以模拟人的抽象思维为主,具备经验推理能力和归纳总结能力,在已知领域里,即使信息不完备,也能做出正确判断或最优决策;第三阶段是灵感智慧,该阶段智能以模拟人的灵感思维为主,尽管在未知领域,仍可以触类旁通,瞬间直抵事物本质或产生新思想。可见,人工智能对脑力劳动的替代逐级深入,对产业的冲击也将逐级增强。即便如此,现阶段产业发展的核心仍然是人才,面对人工智能的逐级替代,产业发展更需要重新审视人才培养的逻辑与重心,塑造以高阶智力为主导的人才核心竞争力。
一是培养向机器学习的能力。目前人工智能已在第一阶段取得突破性进展,未来会呈现人机协作、各有所长的局面。人机沟通将是日常生产所需的基本技能。不仅如此,机器的计算、记忆、搜索、识别等功能远远超过人类,人们需要设法向机器学习,高效归纳人工智能的计算结果,并尝试利用人工智能的计算结果开发全新的思维方式,重新思考产业发展的模式和规律。
课程设置应与高职教育培养目标和方式相一致
人工智能课程主要讲授当今智能领域的理论方法及其应用,是一门涉及哲学、逻辑学、语言学、控制论、生物神经学等多个学科的课程。以普通高校高年级计算机专业学生为讲授对象,人工智能课程在教学上一般以理论讲授为主,并辅以一些应用实例加以分析。课程本身理论性强,内容较为抽象,因此对学生专业知识基础的要求高,在教学上往往强调对各种智能理论的深入讲解和分析,以此达到提高学生专业理论水平的目的。
当前高职教育中为计算机专业学生所开设的人工智能课程很大程度上沿用了普通高等教育环境下的教学方式和内容,这显然与高职教育本身培养人才的目标和方式不一致。高职教育的最终目标是要培养适应生产需要的技能型、应用型人才,而高职教育在教学方式上应更为注重实践教学,包括各种实验、实训、实习和设计。因此,人工智能课程中单纯的理论讲授并不能有效地适应高职教育的实际教学环境要求,有必要对人工智能课程在教学内容和方式上加以改革。
三个改革途径
(一)引导学生阅读应用研究文献
高职教育强调培养学生的知识应用技能,其中重要的一点是要培养学生把理论知识应用到实际生产中的能力。然而在教学实践过程中,学生普遍反映由于人工智能课程理论性强,难于从课本理论联系到实际的专业应用上,这样对激发学生的学习兴趣,提高技能应用水平是不利的。
实际上,人工智能涉及的应用领域极为广泛,其中在专家系统、模式识别、智能控制、数据挖掘、自然语言理解等方面尤为突出,每一种应用都能够很好地体现出人工智能学科的基本理论方法特点。因此,在课程学习的开始阶段,应让学生按照个人兴趣自行选定某个应用领域,在一定的提示和引导下通过检索有关文献,访问相关的科研院校网站等方式获取资料,了解当前该领域的发展现状和具体产品的开发和使用情况,最后在课程的结束阶段以学习报告的形式在课堂上加以演示和共同讨论,这样可以大大激发学生学习人工智能课程的主观能动性,开阔学生的知识视野。资料的收集阅读与思考是知识应用的首要环节,对于培养应用型人才的知识应用技能很有帮助。
(二)安排学生对经典算法程序进行实验
与普通高等教育相比,高职教育更加强调实践教学的重要性。从实践中学习和理解理论知识,并且把所学知识运用到实践中,这是高职教育的重要特点。人工智能课程内容抽象而概念性强,单纯的理论讲解学生难以从中得到启发,也难以体现出高职教育突出实践教学的特点,为此需要安排学生动手实验,从实践中理解人工智能科学的理论原理和应用途径。
在人工智能科学的发展过程中,先后提出了一些经典的优秀算法程序,如A*算法、遗传算法、神经网络的BP学习算法等,在科研和工程实际中得到了广泛的应用,在实践教学中同样有着重要价值。根据教学要求和实际情况,学生并不需要自行设计关于这些算法的具体程序,在提倡开放和共享源代码的今天,通过网络能够获得大量相关的程序代码资源。同时,一些软件平台也集成了一些工具箱,如遗传算法工具箱、神经网络工具箱等,只需设定相关输入参数和数据,便可通过调用工具箱函数实现算法,极为简便而易于理解。
学生应通过对这些程序作验证性实验来理解所学内容。为安排学生有效地进行实验,教师应结合当前阶段所讲授的内容准备相应的算法程序,当该部分内容结束后在课堂上讲解和演示算法程序的运行方法。学生获得该算法程序以及具体的实验任务后在课后完成实验并提交实验报告。
例如,在讲授启发式搜索时,可向学生提供A*算法求解八数码难题的算法程序,并对某个学生给定某个初始棋盘状态,要求学生动手运行程序并记录由算法扩展所得的每个棋盘状态的估价函数计算结果,以及相应的OPEN表和CLOSED表的变化情况,从中理解A*算法的原理特点。又如,在讲授BP学习算法时,可根据学生的实际情况对内容进行调整,强调BP神经网络的实际工程应用价值,而对BP算法的基本原理只作简单介绍。向学生提供利用BP神经网络学习特定目标函数的MATLAB程序代码后,要求学生动手运行该程序,并且记录和对比神经网络在训练前后对目标函数的逼近效果。
(三)启发学生引入人工智能理论方法对毕业设计加以创新
毕业设计是高职教育的重要环节,学生通过毕业设计对以往所学知识作系统性总结,通过毕业设计能进一步加强学生的技能训练,提高学生的技能应用水平。从实践教学的角度来讲,毕业设计不仅仅要求学生对已学知识和技能的简单重复运用,更重要的是强调学生能够主动独立地分析实际问题,对问题的解决方法提出新的观点并付诸实践。然而从教学的实际来看,在毕业设计中学生创新的主动性不足,往往停留在继承和模仿阶段,毕业设计作品少有突破和创新。究其原因,并非学生所学知识和技能不足,而是学生未懂得如何分析已有问题,在其基础上引入新的解决方法或提出新的应用内容。
在计算机领域中,人工智能属于研究和创新的前沿和热点,许多旧有问题利用人工智能方法都得到了新的解决途径。教师在指导学生毕业设计时,可针对某一问题恰当地启发学生引入人工智能的理论和方法,并尝试性地运用在解决当前问题之中,这样能较容易地获得新的改进和突破,对培养学生创新观念和能力很有意义。
近年来,高职教育得到了迅速发展,其社会认可度也不断提升。但是,在发展的过程中也出现了一些新的问题,其中突出的是如何对以往普通高等教育的教学方式和内容加以改革,以适应高职教育的新要求。人工智能课程作为一门重要的计算机专业课程,仍需要结合高职教育的实际要求以及学生的具体情况,在加强培养应用型、技能型人才,加强实践教学上不断进行探索和改革。
参考文献
[1]赵蔓,何千舟.面向21世纪的《人工智能》课程的教学思考[J].沈阳教育学院学报,2004,6(4):131-132.