欢迎访问发表云网!为您提供杂志订阅、期刊咨询服务!

圆柱和圆锥的关系大全11篇

时间:2022-04-08 17:01:15

绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇圆柱和圆锥的关系范文,希望它们能为您的写作提供参考和启发。

圆柱和圆锥的关系

篇(1)

第1题(本题为教材中的例题):工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数)

第2题:你会求圆锥的体积吗?你是怎么知道的?

结果统计如下表。

根据前测信息,学生的学习起点简析如下。

经验起点:理解圆锥体积与底面积和高有关。在“不能正确列式计算”的学生中,两班分别有一定比例的学生虽然不会正确列式计算,但能猜测圆锥体积是“底面积×高”,或认为是“底面积×高÷2”。

知识起点:圆锥体积计算方法的学习已不是本课最重要的目标。两个班分别有78.3%和66.0%的学生已经会正确列式计算圆锥的体积,学习的途径也很多,其中“预习学会”的几乎占50%,说明学生已有较好的学习习惯。

认知起点:圆锥体积计算方法的探究过程需加强,需不断丰富活动经验。由于本课是在学习了圆柱的体积后进行的,部分学生受直观定式的影响,对圆锥体积计算方法的猜测出现偏差。

二、教学对策

1.学生的学习起点是什么?

很显然,如果仅以“使学生掌握圆锥体积的计算方法”作为本课的教学目标是不够的。在学习圆锥体积计算方法的同时,需要创设有效环节帮助学生发展空间观念。

2.怎样帮助学生获得丰富的操作经验并理解知识?

需要组织行之有效的操作活动,让每一位学生参与其中,经历操作过程,积累操作经验,从而获得感悟。操作器材的选择与提供尤为重要。

三、教学实践

1.复习准备,直接揭题

2.切割猜想,初步沟通圆柱与圆锥的联系

(1)如果要用木料加工(切削)成一个这样的圆锥(课件出示),它的底面直径是10厘米,高是15厘米。选择怎样形状的木料加工最方便?

(2)为什么选择圆柱形木料?你是怎么想的?

(3)这里有4个不同型号的圆柱形木料,选择底面直径和高分别是多少的圆柱形木料加工最方便?为什么?先独立思考,再同桌交流。

(4)选择第3个圆柱加工。猜测:这个圆锥的体积和圆柱有怎样的关系?并说说你的想法。(课件出示:■)在这两个容器中倒满水,再猜测它们的体积有什么关系。

3.探究圆锥体积的计算方法

操作材料说明:同桌两人合做。全班共提供24套学具。其中22套中有3组不同型号等底等高的圆柱、圆锥,还有1套等底不等高的圆柱、圆锥和1套等高不等底的圆柱、圆锥。

(1)引入:这个圆柱和圆锥,它们的体积有什么关系呢?你打算怎么做试验?要注意什么?

(2)同桌合作,先思考准备怎么做,再动手试一试。

(3)反馈:你们小组是怎样做试验的?把你的过程和结果介绍给大家。

生1:把圆锥装满水后倒入圆柱中,一次又一次重复,重复倒了3次,正好把圆柱装满。以此说明圆锥体积是圆柱体积的■。

生2:在圆柱里灌满水,然后倒进圆锥,圆锥里的水满后,倒回桶里。再把圆柱中的水倒进圆锥,满后再倒进桶里,再把圆柱里剩下的水倒进圆锥中,正好又倒满。

师(追问):倒了几次?你得到什么结论?

生2:正好倒3次。说明圆柱体积是圆锥体积的3倍。

生3:先将圆柱灌满水,圆锥不灌水,把圆锥轻轻地放入圆柱中,此时圆柱中的水会溢出来。再把圆锥轻轻地拿出来,这时圆柱中的水面会下降。用尺量出圆柱中空出部分的高,看看与圆柱的高有什么关系。

师(追问):溢出的水就是什么?空出部分的高与圆柱的高有什么关系?

生3:溢出的水就是圆锥的体积。空出部分的高是圆柱高的■。说明圆锥的体积就是圆柱的■。

生4:先把圆锥装满水,倒进圆柱里。然后用尺量出圆柱中水的高度,最后用量出的数据除以圆柱的高度。

师(追问):你们倒了几次?结果如何?

生4:只倒了1次。结果水面的高度正好是圆柱高度的■。

师(再次追问):说明什么?

生4:圆锥的体积是圆柱体积的■。

生5:把圆锥装满水后,倒进圆柱中,用笔做个记号。然后再把圆锥装满水后倒进圆柱,再做个记号。我用尺量了一下,这两个记号正好把圆柱的高平均分成三份。说明圆锥体积是圆柱的■。

生6:我们前面猜测圆锥的体积是圆柱的■。所以根据圆柱上标出来的线,倒■的水。

师(追问):你是怎么知道是■的水?

生6(举起试验圆柱):这上面有红色刻度的,正好是在高的■处。

师(评价):哦!你们小组做试验的圆柱上有已经做好标记的红线。你们能根据自己的猜测进行试验,验证了猜测是正确的。这种猜想、验证的做法正是我们做学问的态度和方法。如果你一直用这种方法和态度进行学习,相信你会越来越出色的!

生7:我们组开始用圆锥灌满水倒进圆柱里,感觉误差大。就换了一种,把圆柱灌满水,往圆锥里倒,刚刚好倒了3杯。说明圆柱体积是圆锥的3倍,也就是圆锥体积是圆柱体积的■。

师(评价):真了不起!你们小组不但完成了试验任务,得出了结论,而且发现了做试验减少误差的方法!

师(追问):还有不同的发现吗?

生8:我们的试验结果和他们的不一样。我们也是做倒水试验,可是用圆锥装满水倒入圆柱,倒了4次多才倒满。

生9(另有一组的学生):我们才倒了2次半就倒满了。(其他学生都静下来)

师:请你们两组把你们做试验的圆柱、圆锥拿上来,当着大家的面再做一次。(这两组学生当着全班学生的面又做了一次,结果仍然和原来相同。)

师:这是怎么回事呢?

生10(兴奋地):我知道啦!(走到讲台前,边指边说)他们这两组的圆柱、圆锥和我们做试验的不一样。

师(追问):什么不一样?

生10:这个圆锥比圆柱矮,所以要倒4次多才能倒满。这个圆锥的底比圆柱大,所以倒了2次半就倒满了。(其余学生若有所思)

师:那你们做试验的圆柱、圆锥之间有什么关系呢?请你们仔细观察。(学生纷纷观察自己小组做试验的器材)

生10:我们做试验的圆柱、圆锥的底是相等的,高也是相等的。

师:你们的发现和他的一样吗?

生:一样!

师:底相等,高也相等,我们叫做等底等高。其他同学还有什么想说的呢?

生11:必须是等底等高的圆柱和圆锥,做试验时,才正好倒3次。

师(小结):只有等底等高的圆柱和圆锥,圆锥体积是圆柱体积的三分之一,圆柱体积是圆锥体积的3倍。

(4)课件演示试验过程,并根据过程推导圆锥体积计算方法。V圆锥=■V圆柱=■Sh。

(5)计算如右图所示圆锥的体积。

反馈时追问:3.14×(10÷2)2×15表示什么意思?

引导:看着这个圆锥,先想像和它等底等高的圆柱的形状,再用手比划。(课件出示:■)

思考:削去了多少体积?你是怎么想的?根据这幅图,你还想到什么?

4.练习巩固

(1)课件出示:工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?要计算这个沙堆的体积,需要知道哪些信息?结合生活实际想一想:底面半径、直径和周长,哪一个信息便于测量?为什么?(出示:底面周长是12.56米,高1.2米。反馈时追问:12.56÷3.14÷2和3.14×(12.56÷3.14÷2)2×1.2分别表示什么意思?)

(2)想一想,做一做。

出示:■已知圆锥的体积是56.52立方厘米,底面积是28.26平方厘米。它的高是多少厘米?

追问:56.52×3或56.52÷■表示什么意思?

课件演示一: ■

课件演示二:圆柱右移■

思考:圆柱与圆锥的体积有什么关系?如果要使它们的体积相等,并且保持原来的形状,你有什么办法?可以画图说明。

(3)观察、猜想。

课件依次出示:■;■;……

思考:根据这节课的学习,你有什么猜想?

5.总结提升

四、反思

在教学过程中,学生的表现极其出色:操作到位、感悟深刻、回答精彩。这都得益于整堂课的设计都立足于学生已有的学习起点,真正做到尊重学生的需求。

1.立足学生的经验起点

六年级的学生,他们已积累了一定的生活与活动经验。因此在教学时要重视唤醒学生已有的经验。

首先,唤醒学生的生活经验。学生的生活经验迁移到学习活动中,往往是一种直觉。这种直觉,可能是正确的,也可能是错误的,但不管如何,这些都是学生进一步学习的“土壤”,等待着知识“种子”的播撒。如在上课伊始,让学生思考“如果要用木料加工(切削)成一个这样的圆锥,它的底面直径是10厘米,高是15厘米。选择怎样形状的木料加工最方便?”学生根据生活经验,马上想到要用圆柱形的木料加工,因为它们的底都是圆的。这种根据两个形体间基本特征的联想,是多么可贵啊!接着让学生从提供的4个不同型号的圆柱木料中做出选择,学生能在潜意识中关注它们的底面直径与高的数值作出判断,这是生活经验的又一次提升,明确了“圆锥从哪里来”的问题。

其次,关注基本活动经验的积累。活动经验具有不可替代性。而在日常教学中,我们往往容易犯“经验替代”的过错,造成了学生只知道圆锥体积的计算方法,而不会主动沟通圆柱与圆锥的联系。为了避免这种现象,在上述课例中,我设计了让学生同桌合作的环节。通过合作,学生反馈的信息异常丰富,概括起来有三个层次:(1)两种常规的倒水法;(2)“排水法”和“量高法”;(3)操作方法的优化提升。学生通过操作发现,用圆柱容器往圆锥容器中倒水,比用圆锥容器往圆柱容器中倒水误差小。这是多么可贵的发现啊!试想,如果没有实物操作,只让学生看课件和看教师操作,他们能有这样的体会和这些发现吗?正因学生有如此丰富的经验积累,才使圆锥体积的计算方法水到渠成!

2.立足学生的知识起点

“圆锥的体积”是学生在小学阶段学习的最后一个形体,在此之前,学生已积累了较为丰富的知识经验。尤其是经过长方体、正方体、圆柱体积的学习之后,学生对“柱体”的体积计算有了一定的认识,“底面积×高”的思想已逐渐树立。但在会求圆锥体积的学生中有相当一部分只是记住了计算方法,而对为什么这样算不清楚,也就是说学生公式推导过程的经验几乎为零。此外,由于圆柱与圆锥在形体上有一定的联系(底面都是圆的),学生会很自觉地对这两个形体进行沟通,寻求它们之间的联系。因此在教学中,如何让学生进一步深化这两个形体之间的联系显得尤为重要,这也成为本课的一个重要的教学任务。如在学生尝试列式计算圆锥的体积后追问:“3.14×(10÷2)2×15表示什么意思?”他们会不自觉地想到与圆锥等底等高的圆柱的体积,并用手势比划出圆柱的形状,从而初步感悟等底等高的圆柱与圆锥之间的体积关系。接着让学生观察■,从不同的角度分析圆柱、圆锥、削去部分的体积之间的关系,进一步深化了等底等高的圆柱与圆锥之间的体积关系。这些新知的获得,都是立足于学生原有的知识基础,是学生自主地生发出来的。

3. 立足学生的认知起点

学生的认知随着年龄的增长而不断丰富,他们的认知起点包括心理起点与思维起点。

篇(2)

[中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2016)35-033

教学片断一:

师:请每组同学拿出圆柱和圆锥学具,先比一比圆柱和圆锥的底。

生:一样大。

师:请大家再比一比它们的高,怎么样?

生:一样高。

师:下面,我们用等底等高的圆柱和圆锥做实验,看看会发现什么样的规律。

生1:我们组先向圆柱装满水,然后倒入圆锥中,倒三次后倒完,说明圆锥的体积是圆柱体积的三分之一。

师:应该说清楚什么样的情况下圆锥的体积是圆柱体积的三分之一。

生1:等底等高的圆锥体积是圆柱体积的三分之一。

生2:我们组先给圆锥装满沙子,然后倒入圆柱中,倒三次就倒满了,这说明圆锥体积是圆柱体积的三分之一。

师:圆柱与圆锥的底和高怎么样?说清楚了吗?

生2:等底等高的圆锥体积是圆柱体积的三分之一。

师出示判断题:圆锥体积是圆柱体积的三分之一。(全班一半学生判断此题正确)

……

教学片断二:

师:请同学们拿圆锥和圆柱学具,这节课我们就用圆锥和圆柱做实验,看看能不能通过实验发现圆锥和圆柱体积之间的关系。下面,我们开始分组做实验。(生动手操作)

生1:我们组做了两个实验。第一个实验:选择两个等底等高的圆柱和圆锥容器,先给圆柱装满水,然后倒入圆锥中,倒三次正好倒完,发现等底等高的圆锥体积是圆柱体积的三分之一;第二个实验:选择两个不等底、不等高的圆柱和圆锥容器,方法和第一个实验相同,最后发现不等底、不等高的圆锥体积是圆柱体积的七分之一。

生2:我们组做了三个实验。第一个实验:选择两个等底等高的圆柱和圆锥容器,先给圆锥装满沙子,然后倒入圆柱中,倒三次正好倒满,发现等底等高的圆锥体积是圆柱体积的三分之一;第二个实验:选择底面积相等、高不相等的圆柱和圆锥容器,方法和第一个实验相同,发现等底不等高的圆锥体积是圆柱体积的五分之一;第三个实验:选择底面积相等、高不相等的圆柱和圆锥容器,方法与前两个实验相同,发现等底不等高的圆锥体积是圆柱体积的四分之一。

师:各小组做了这么多的实验,有相同的结论吗?

生3:有,等底等高的圆锥体积是圆柱体积的三分之一。

师:不等底等高的圆柱体积和圆锥体积之间的关系,结论是五花八门,没有一定的规律,所以只有等底等高的圆柱和圆锥体积才有以下关系:圆锥体积=圆柱体积×1 / 3。

师出示判断题:圆锥体积是圆柱体积的三分之一。(全班学生判断此题错误)

……

反思:

不同的教学理念,教学设计不一样,其教学效果更是不同。如上述两个教学片断,笔者认为不同之处主要表现为以下两个方面。

1.机械性操作和自主性操作

教学片断一中,学生犹如机器,机械地执行教师发出的操作指令,实际上并不清楚为什么要用等底等高的圆柱和圆锥容器做实验。这样的实验操作没有思维含量,严重束缚了学生的操作自由,阻碍了学生的思维发展。教学片断二中,教师敢于“该放手时就放手”,为学生提供自主实践探究的机会,这样学生的实验活动是自由的,思维是发展的,目标是明确的。学生经历了亲身体验,清晰的数学概念就形成了,教师在教学中就不用花大力气、费口舌反复强调“等底等高的圆锥体积是圆柱体积的三分之一”。

篇(3)

根据以往的教学经验,虽然我在课堂上反复强调计算圆锥的体积时不要忘记乘1/3,但“圆锥的体积”一课教学之后,还是有大部分学生容易忘记,究其原因是学生对圆锥体积公式的推导过程印象不深刻,总是容易遗忘圆锥与它等底等高的圆柱体积的关系。因此,重新教学此课,我多下工夫备课。常言道:“学贵有疑。”于是我精心设计教学,大胆创新,处处设疑,旨在激发学生的兴趣,加深他们对圆锥和与它等底等高的圆柱体积之间关系的认识。

首先,动态设计,疑中求知。

课件出示:

(让学生从中选择一个合适的圆柱和圆锥一起研究它们体积之间的关系)

师:你能从这些圆柱和圆锥中,选择一个合适的圆柱和圆锥一起来研究它们体积之间的关系吗?(学生小手林立,兴奋不已)

生1:我选中间一个圆柱。

师:为什么?

生1:因为圆锥的高和圆柱的高都一样。

生2:因为它们等底等高。

师:也就是说,研究圆柱和圆锥体积之间的关系要有一个统一的标准,那就是等底等高。(板书:等底等高)

课件出示:估计一下,这个圆锥的体积是圆柱体积的几分之几?

书上例题是直接出示两个等底等高的圆柱和圆锥,让学生寻找圆柱和圆锥体积之间的关系,这样教学固然可以,但学生对圆柱和圆锥体积之间的关系处于一种被动告知的状态。这种被动接受知识的结果,显而易见,就是学生为什么总容易忘记等底等高的圆柱和圆锥体积之间关系的原因了。所以,我决定把例题稍作改动,从学生的生活经验出发,让学生凭借自己的感觉先从图中找出一个和圆锥相应的圆柱一起研究它们体积之间的关系,再引导学生说一说圆柱和圆锥体积之间的关系,使学生明白这里要做到公平就必须有一个前提——等底等高的圆柱和圆锥。这种让学生自己通过观察寻找出研究的圆柱和圆锥体积之间关系的前提条件的方法,学生对知识的掌握能不牢固吗?这样教学,还为学生继续研究圆柱和圆锥体积之间的关系奠定了良好的基础。

其次,巧设倒水,探索新知。

最近几年,刘谦的魔术风靡全国,可以说是老少皆爱。那么,刘谦的魔术为什么会有如此大的魅力呢?细细想来,刘谦的魔术从开始表演到结束都是时时刻刻扣人心弦的,即使表演结束很长一段时间后还是那么让人回味无穷、意犹未尽,激人想去探个究竟。我想,我们的课堂教学也应具有刘谦魔术的魅力,让学生想深入探究所学知识。

所以,课堂教学中,我提供圆柱、圆锥、沙子等实验用具,让学生验证这一组圆柱和圆锥(如下图)是否等底等高。

师:现在我们就来验证一下。做实验时,为了减少误差,我们一定要注意尽量不要把水撒到外面。

师:现在我给圆锥倒满水,请你猜猜圆锥里的水倒进圆柱后,水位大概在圆柱的什么位置?

生:

师(第一次倒水):现在请你看看,猜对了吗?(学生一片欢呼,为自己猜对而高兴)

师:我们接着给圆锥倒满水后再往圆柱里倒,猜一猜,要几次才能把圆柱倒满?

生(异口同声):三次。

(师第二次演示将圆锥里的水往圆柱里倒,学生齐呼“两次”,接着师又倒了一次水,学生齐呼“三次”,学生用热烈的掌声庆祝自己的猜测是正确的,脸上露出如获至宝的笑容)

师:那么,通过刚才的验证,你知道圆锥和它等底等高的圆柱体积之间有什么关系吗?

生1:圆锥的体积是和它等底等高的圆柱体积的三分之一。

生2:圆柱体积是和它等底等高的圆锥体积的三倍。

(师板书:圆锥的体积是和它等底等高的圆柱体积的1/3)

师(总结):通过刚才的实验和总结,可以怎样表示圆锥的体积?

生回答师板书:圆锥的体积=底面积×高×1/3。

……

以往教学此课,教师总认为学生自己做实验了,就一定能找出圆锥体积是和它等底等高的圆柱体积的1/3。其实不然,以前学生做实验大多流于形式,只顾着操作,感觉好玩,并不是边做边思考。这里做实验的目的是让学生通过思考“圆锥和圆柱体积之间为什么是这样的关系”的问题,使学生通过思考和探究,不仅“知其然”,而且“知其所以然”。为了让实验能吸引学生积极去思考,在探索等底等高圆柱和圆锥体积之间的关系时,我没有让学生亲自动手实验,而是设计了两次猜测、三次倒水的环节来激发学生探究的欲望。“我猜得对不对?”“我的结果正确吗?”“圆柱和圆锥体积之间到底有什么关系呢?”……通过对几个不同问题的猜测,既营造了良好的课堂氛围,又激发了学生的好奇心。学生的第一次猜测是不自信的,他们对自己的猜测是否正确持怀疑态度,但经过第一次倒水验证之后,学生品尝到成功的喜悦,从而增强自信心。我继续引导学生进行猜测:“我们接着给圆锥倒满水后再往圆柱里倒,猜一猜,要几次才能把这个圆柱倒满?”这时学生充满自信地齐声回答“三次”。接下来,我倒水进行验证,更是给学生带来获取胜利的心理满足。通过这样一个验证的过程,激发了学生浓厚的学习兴趣和强烈的探究欲望,谁能说这节课学生对等底等高的圆柱和圆锥体积之间的关系没有掌握呢?这才真正体现教师的主导作用和学生的主体作用相结合,有效培养了学生的自主探究能力。

再次,注重算法指导,创造高效课堂。

以往教学“圆锥的体积”这部分内容后,发现有一部分学生对等底等高的圆锥和圆柱体积之间是什么关系说得头头是道,但一落实到圆锥体积的计算中,十之八九忘记去乘三分之一。即使有些学生不忘记,但由于计算圆锥体积时不得方法,往往导致计算错误,做题正确率很低。针对上述现象,教学本节课时我注意以下几点,力求让学生在这些方面得到很好的弥补。

一、巧算铺垫,埋下伏笔

口算:3.14×12×1/3=

3.14×6×1/3=

3.14×15×1/3=

3.14×32×1/3=

先让学生口算并说一说是怎样想的,师再引导学生进行总结:“计算的时候为了简便,能约分的要先约分再计算。”

学生在计算时往往忽略了简便算法,导致计算起来比较复杂,特别是含有3.14这样复杂的小数计算时,更是学生在计算中跨不过去的一道坎。所以,课前复习时,教师要给学生适时渗透简便计算的方法。如出示3.14×12×1/3让学生口算并说一说自己是怎样想的,引导学生寻找出先约分再计算的方法,从而降低计算的难度,为后面巧算圆锥的体积打好基础。

二、算法渗透,构建课堂

教师在引导学生探索出等底等高的圆柱和圆锥体积之间的关系后,教学重点应转移到算法指导上。所以,课堂中我是这样做的。

1.试一试(大屏幕出示)

先让学生读题理解题意,找条件并说说怎样求问题,再独立列式。学生解题时教师注意算法指导,强调计算圆锥的体积应列综合算式,先约分再计算,这样可以降低计算难度,提高计算的正确率。

2.“练一练”第1题

请学生根据条件先求出底面积,再求体积,然后集体订正。

底面积:2×2×3.14=12.56

体积:12.56×6×1/3=25.12

篇(4)

[中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2016)05-022 

数学学习是从感性认识开始的,所以在数学课堂中,教师应加强直观演示的教学,引导学生对学习素材进行多层面、多角度、多维度的观察、比较、选择与归纳。下面,以“圆柱与圆锥”单元教学为例,谈谈如何通过直观教学,培养学生的数学思维。 

一、操作,激发学生的思维 

“纸上得来终觉浅,绝知此事要躬行。”课堂教学中,教师可通过动手操作,激活学生的思维,引导他们深入探究,真正理解所学知识。 

师:圆柱的体积计算公式是什么? 

生1:圆柱的体积=底面积×高。 

师:我们是怎样推导圆柱的体积计算公式的? 

生2:我们把圆柱转化成等底等高的长方体,通过长方体的体积计算公式推导出圆柱的体积计算公式。 

师:今天,我们探究圆锥的体积计算方法。猜一猜,圆锥的体积可以怎样求?它与哪些条件有关? 

生3:只要把圆柱上面的一个圆缩成点就变成了圆锥,说明圆锥的体积和圆柱是有联系的。 

生4:可以把圆锥转化成已经学过的立体图形——圆柱,由于圆柱体积=底面积×高,那么圆锥的体积计算可能与它的底面积和高有关系。 

…… 

我国数学家徐利治曾说过:“直观就是借助于经验观察、测试或类比联想,所产生的对事物关系直接的感知与认识。”教学“圆柱的体积”时,把圆柱的体积转化成已学过的长方体体积,这样能有效唤醒学生的学习潜能,使学生去观察、反思、梳理,为后续推导圆锥的体积计算埋下伏笔。由圆柱体积的推导过程,学生能想到圆锥的体积是不是能转化成已学过的立体图形进行计算,这样就会产生一种学习新知识的需求。学生由于生活经验和认知水平的局限,更易于接受直观的事物。因此,直观演示更利于学生进行观察、比较、分析和想象,并在此基础上展开更加丰富多彩的直观推理,进而洞察相关联物体之间的联系与区别,获得必要的结论。 

二、实验,促进学生的思维 

学生的感悟因经历而丰富,视野因思维更拓展。因此,课堂教学中,教师应以实验为媒介,促进学生的数学学习与数学活动有机融合。 

师(出示许多大小不等的圆柱和圆锥形容器):你打算将圆柱与圆锥如何转化?如果让你在这么多的圆柱与圆锥中选择两个来探究,你打算选择什么样的圆柱和圆锥?说说你选择的理由。 

生1:刚才把圆柱的一个底面缩成点就变成了圆锥,其中圆锥与圆柱的底面积相等,高也相等,所以应选择底面积相等、高相等的圆柱和圆锥进行探究。 

师:为了便于我们研究圆锥体积,每个组都准备了一个圆柱和一个圆锥,比一比,它们有什么相同的地方?(生操作演示,如下图) 

师:你发现了什么?底面积相等,高也相等,用数学语言来说就叫等底等高。既然圆锥与圆柱等底等高,能不能直接用圆柱的体积计算公式求出圆锥的体积呢? 

生2:不行,把圆锥放入圆柱形容器中,发现圆锥比圆柱的体积小。 

师:这位同学真了不起。请你再猜一猜,圆锥与它等底等高的圆柱体积有什么样的关系呢? 

生3:圆锥体积可能是它等底等高圆柱体积的1/2。 

师:还有其他的猜想吗?  

生4:圆锥体积可能是它等底等高圆柱体积的1/3。 

师:有什么好办法验证自己的猜想是正确的呢?先在小组里交流,再做实验验证你的猜想。(生动手操作) 

师:谁来汇报一下? 

生5:我选择等底等高的圆锥和圆柱,发现把圆锥装满水倒入圆柱里,倒满了三次,说明圆锥体积是它等底等高圆柱体积的1/3。 

师:其他组实验的情况也和他们一样吗? 

生:一样。 

师(出示两组大小不同的圆柱和圆锥,如下图):这两组圆柱和圆锥,圆锥的体积还是圆柱体积的1/3吗?为什么? 

生6:这里的圆锥体积不是圆柱体积的1/3,因为它们不是等底等高。 

师:这说明了什么? 

生7:不是任何一个圆锥的体积都是圆柱体积的1/3。  

师:什么样的圆锥与圆柱体积才有1/3的关系呢? 

生8:等底等高的圆锥和圆柱。 

…… 

数学抽象地反映了客观世界。在数学学习过程中,学生由于受知识经验和思维水平的限制,经常会遇到一些很难用语言解释清楚的数学问题,这时候直观图形或者直观模型就能够给学生提供形象的思考和表达的机会,帮助学生把头脑里的数学事实外显化。学生通过操作、实验去验证自己的想法是否正确,不知不觉中,学生的认识变得更丰富了,理解变得更深刻了,思维变得更灵活了,体验变得更强烈了。这样教学,顺应了学生的思维发展,使他们真正掌握了解决问题的策略。 

三、观察,发散学生的思维 

系统的发散训练,能适当降低思维的难度,给学生的自主学习搭建一个“脚手架”,有利于学生内化数学思想方法,提升思维能力。 

例1 如右图,正方形OABC的面积是10平方厘米,O是圆心,求圆的面积。 

由图可知,正方形的面积就是r 2,圆的面积就是πr 2=3.14×10=31.4(平方厘米)。 

例2 如右图,正方形ABCD的面积是40平方厘米,求圆的面积。 

由于有了例1的铺垫,学生能把例2转化为例1——画两条与正方形邻边互相垂直的直径(如右图),这样就把大正方形平均分成了四个小正方形,可以先求出每个小正方形的面积,也就是求出r 2的值,再用r 2的值求出圆的面积,所以圆的面积πr 2=3.14×(40÷4)=31.4(平方厘米)。 

例3 如右图,求大正方形、圆、小正方形的面积比。 

篇(5)

课堂实录:

一、创设情境,引入问题

师:前面我们学习圆锥的认识时,曾经见过这个物体,是什么呀?(出示铅锤)你们有办法知道这个铅锤的体积吗?

生:用排水法。

教师演示排水法,学生观察后阐述怎样用排水法测量铅锤的体积。

师:如果要测量一个类似圆锥形的小麦堆体积,怎么测量呢?也用排水法,可行吗?

生:不可行。

师:说明排水法具有局限性,需要我们去寻找一种普遍的方法。这节课我们就一起来研究圆锥的体积。(板书课题:圆锥的体积)

设计意图:提出问题,引发学生的认知需要,激发求知欲,为学生提供问题情境,引导学生自主探索,培养学生的自主探究能力。

二、旧知迁移,大胆猜想

师:请同学们回忆一下,我们已经学过哪些图形的体积计算?

生:长方体、正方体、圆柱体。

师:用什么方法推导出它们的体积公式呢?

生:将新图形进行转化,再根据学过图形的体积公式进行推导。

师:在外观上,圆柱与圆锥有相似性。请大胆猜想一下,圆柱体积和圆锥体积会存在什么样的关系?

生:我猜想它们应该有倍数关系吧?!

师:有了猜想,就要验证,用什么方法验证呢?

生:做实验。

师:请同学们阅读教科书第26页,看看书上给我们推荐了什么实验方法?

设计意图:从已学知识中提取素材,用层层递进的问答形式与学生平等对话,建立良好的互动关系,让学生有思维的碰撞,引发疑问,大胆提出圆柱和圆锥体积关系的猜想,在猜想中交流,在交流中感悟,引发学生进一步探究的欲望。

三、实验验证,探索规律

1.明确任务,动手实验。

学生分小组进行动手实验,教师注意实验学具的分发,同一标号的圆柱体与圆锥体等底等高,其他圆柱体和圆锥体不等底等高,或不等底也不等高(其中5个小组发同一号的等底等高圆柱和圆锥,其他小组3种情况的圆柱体和圆锥体都有)。

师:书中用什么方法验证圆柱与圆锥体积之间的关系?

生:用倒沙或倒水的方法。

师:请同学们用准备好的沙、圆柱体和圆锥体学具动手实验。

师:边做实验边填写实验记录单。

师:一共要做几次实验?

生:三次。

师:谁来读第二栏的要求,观察比较圆柱与圆锥的什么?

生:比较圆柱与圆锥的底面积与高。

师:为什么?

生:因为圆柱的体积与底面积和高有关。

师:分析得有道理。

师:第三栏实验结果,把每次实验得出的它们体积之间的关系记录下来,开始实验吧!

设计意图:给学生提供实验的空间,指导学生先对实验问题进行分析,明确实验步骤和方法,然后再对实验结果进行记录,培养学生良好的探究习惯,使学生真正成为学习的主人。

2.分析过程,得出结论。

师:哪个小组汇报一下你们的实验过程和实验结果?

生:我们小组是这样做的,第一次:选用同号(1号圆锥体和1号圆柱体)并排放在一起,将直尺放在它们顶端,直尺是平的,说明等高,再将两个圆底面对着叠在一起,刚好完全重合,说明等底,用圆锥体装满沙倒进圆柱体,倒了3次刚好将圆柱体倒满。第二次:选用1号圆锥体和2号圆柱体并排放在一起,将直尺放在它们顶端,直尺是倾斜的,说明不等高,再将两个圆底面对着叠在一起,没有重合,说明不等底,用圆锥体装满沙倒进圆柱体,倒了9次才倒满。第三次:选用1号圆锥体和3号圆柱体,通过比较后,发现不等底等高,用圆锥体装满沙倒进圆柱体,倒了7次才倒满。

学生展示实验记录单。

实验记录单:

师:我们再听一听其他小组的实验情况。

生:我们小组用的全是等底等高的圆柱体和圆锥体,做了3次实验,用圆锥装满沙倒进圆柱刚好三次就倒满,得出圆柱体积是圆锥体积的3倍,也就是说圆锥体积是圆柱体积的■。(其他4个小组相继附和)

师:圆锥体积要是圆柱体积的■,必须在什么条件下?

生:等底等高。

师:看来大家的猜想是对的,圆锥的体积与圆柱的体积有关,当它们等底等高时,圆柱与圆锥的体积是3倍关系。

(板书:等底等高 V锥=■V柱 猜想验证)

设计意图:学生在动手实验中发现规律,在小组中充分交流,经历思维的碰撞,用自己的语言阐述探究的规律,体验发现规律的快乐,使学生获得学习的成就感,让平淡无奇的课堂变得更具诱惑力。

3.分析结论,理解公式。

师:大家找出了圆柱与圆锥体积之间的关系,怎样推导出圆锥的体积计算公式呢?

生:圆柱体积等于底面积乘高,可推导出圆锥体积等于底面积乘高乘■。

(板书:V锥=■V柱=■sh)

师:真不错,将学过的知识加以迁移,老师也做了实验,一起来看一下。(课件演示实验过程)

师:这个公式中,s和h各指什么?

生1:s指圆柱体的底面积,h指圆柱体的高。

生2:不同意。s指圆锥体的底面积,h指圆锥体的高。

追问:为什么?

师:公式中sh的积又指什么呢?

生:sh的积就是与圆锥等底等高的圆柱的体积。

师:为什么要乘■?

生:因为等底等高的圆锥体积是圆柱体积的■。

(板书:V锥=■V柱=■sh=■πr2■h 猜想验证应用)

设计意图:大胆放手,让学生自主探索圆锥体积公式推导,经历“再创造”的过程,对规律进行很好的内化。通过观察、实验、猜想、验证、推理、交流等活动,水到渠成地发现等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积计算公式。在探索的过程中获得学习体验,始终让学生成为探索者、研究者、发现者,感受成功的愉悦。

四、多层练习,巩固深化

1.巩固应用。

师:我们找到了普遍方法。现在能不能计算铅锤的体积了?谁来说说计算铅锤的体积,需要测量出哪些数据?

生:底面半径和高。

老师给你们提供三组条件,一起来看一下,请从中任选一组条件进行计算,行吗?

①底面半径4厘米,高6厘米。

②底面直径8厘米,高6厘米。

③底面周长25.12厘米,高6厘米。

指名一学生板演。

2.学以致用。

打谷场上有一个近似圆锥的小麦堆,测得底面直径是4米,高1.2米。每立方米小麦约重735千克,这堆小麦约有多少千克?

3.拓展延伸,深化练习。

有一根底面积是6厘米,长是15厘米的圆柱形钢材,要把它削成最大的圆锥形零件,削去的钢材有多少立方厘米?

学生自己解答。

设计意图:多层练习,巩固深化新知的理解。引导学生感受从猜想—验证—应用—解决生活实际问题的过程,逐一深化巩固新知识的同时,增加了数学与生活之间的联系,使数学生活化,让学生感受到数学的实用性。

五、整理圈点,课堂总结

师:老师拿了一支红笔,如果要在黑板上圈出重点,第一应圈什么?

生:圈等底等高,因为没有等底等高这个前提条件,公式就没法推出来。

师:好,圈起来,第二圈谁?

生:圈体积公式:V锥=■V柱=■sh=■πr2h。

师:很好,再圈起来。

师:回顾本节课,从发现问题猜想验证应用解决问题,经过了整个过程的探索,解决了我们未知的问题。其实在生活中,当同学们遇到问题时,也可以用这样的方法去解决。

篇(6)

(一)知识教学点

1.使学生了解圆柱的特征,了解圆柱的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆柱的侧面展开图是矩形.

2.使学生会计算圆柱的侧面积或全面积.

(二)能力训练点

1.通过圆柱形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;

2.通过圆柱侧面积的计算,培养学生正确、迅速的运算能力;

3.通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能

力.

(三)德育渗透点

1.通过圆柱的实物观察及有关概念的归纳向学生渗透“真知产生于实践”的观点;

2.通过应用圆柱展开图进行计算,解决实际问题,向学生渗透理论联系实际的观点;

3.通过圆柱侧面展开图的教学,向学生渗透化曲面为平面,化立体图形为平面图形的“转化”的观点;

4.通过圆柱轴截面的教学,向学生渗透“抓主要矛盾、抓本质”的矛盾论的观点.

(四)美育渗透点

通过学习新知,使学生领略主体图形美与平面图形美的联系,提高学生对美的认识层次.

重点·难点·疑点及解决办法

1.重点:(1)圆柱的形成手段和圆柱的轴、母线、高等概念及其特征;

(2)会用展开图的面积公式计算圆柱的侧面积和全面积.

2.难点:对侧面积计算的理解.

3.疑点及解决方法:学生对圆柱侧面展开图的长为什么是底面圆的周长有疑虑,为此教学时用模型展开,加强直观性教学.

教学步骤

(一)明确目标

在小学,大家已学过圆柱,在生活中我们也常常遇到圆柱形的物体,涉及到圆柱形物体的侧面积和全面积的计算问题如何计算呢?这就是今天“7.21圆柱的侧面展开图”要研究的内容。

(二)整体感知

圆柱是生产、生活实际中常遇到的几何体,它是怎样形成的,如何计算它的表面积?为了回答上述问题,首先在小学已具有直观感知的基础上,用矩形旋转、运动的观点给出圆柱体有关的一系列概念,然后利用圆柱的模型将它的侧面展开,使学生认识到圆柱的侧面展开图是一个矩形,并能将这矩形的长与宽跟圆柱的高(或母线)、底面圆半径找到相互转化的对应关系.最后应用对应关系和面积公式进行计算.

〔三〕教学过程

(幻灯展示生活中常遇的圆柱形物体,如:油桶、铅笔、圆形柱子等),前面展示的物体都是圆柱.在小学,大家已学过圆柱,哪位同学能说出圆柱有哪些特征?(安排举手的学生回答:圆柱的两个底面都是圆面,这两个圆相等,侧面是曲面.)

(教师演示模型并讲解):大家观察矩形ABCD,绕直线AB旋转一周得到的图形是什么?(安排中下生回答:圆柱).大家再观察,圆柱的上、下底是由矩形的哪些线段旋转而成的?(安排中下生回答:上底是以A为圆心,AD旋转而成的,下底是以B为圆心,BC旋转而成的.)上、下底面圆为什么相等?(安排中下生回答:因矩形对边相等,所以上、下底半径相等,所以上、下底面圆相等.)大家再观察,圆柱的侧面是矩形ABCD的哪条线段旋转而成的?(安排中下生回答:侧面由DC旋转而成的.)

矩形ABCD绕直线AB旋转一周,直线用叫做圆柱的轴,CD叫做圆柱的母线.圆柱侧面上平行于轴的线段都叫做圆柱的母线.矩形的另一组对边AD、BC是上、下底面的半径。

圆柱一个底面上任意一点到另一底面的垂线段叫做圆柱的高,哪位同学发现圆柱的母线与高有什么数量关系?(安排中下生回答:相等.)哪位同学发现圆柱上、下底面圆有什么位置关系?(安排中下生回答:平行)A、B是两底面的圆心,直线AB是轴.哪位同学能叙述圆柱的轴的这一条性质?(安排中等生回答:圆柱的轴通过上、下底面的圆心)哪位同学能按轴、母线、底面的顺序归纳有关圆柱的性质?(安排中上学生回答:圆柱的轴通过上、下底面的圆心,且垂直于上、下底,圆柱的母线平行于轴且长都相等,等于圆柱的高,圆柱的底面圆平行且相等.)

(教师边演示模型,边启发提问):现在我把圆柱的侧面沿它的一条母线剪开,展在一个平面上,观察这个侧面展开图是什么图形?(安排中下生回答,短形)这个圆柱展开图——矩形的两边分别是圆柱中的什么线段?(安排中下生回答:一边是圆柱的母线,一边是圆柱底面圆的周长).大家想想矩形面积公式是什么?哪位同学能归纳圆柱的面积公式?(安排中下生回答:底面圆周长×圆柱母线)大家知道圆柱的母线与高相等,所以圆柱的面积公式还可怎样表示?(安排中下生回答:)

幻灯展示[例1]如图,把一个圆柱形木块沿它的轴剖开,得矩形ABCD.已知,求这个圆柱形木块的表面积(精确到).

矩形的AD边是圆柱底面圆的什么?(安排中下生回答:直径.)题目中的哪句话暗示了AD是直径?(安排中上生回答:第一句,“把一个圆柱形木块沿它的轴剖开,得矩形ABCD”.因圆柱轴过底面圆的圆心,矩形过轴则意味AD过底面圆圆心,所以AD是圆柱底面圆直径.)cm是告诉了圆柱的什么线段等于30cm?(安排中下生回答:圆柱的高等于30cm)什么是圆柱的表面积?哪位同学知道?(安排中上生回答:圆柱侧面积与两底面圆面积的和.)同学们请完成这道应用题.(安排一中上生上黑板做题,其余在练习本做)

解:AD是圆柱底面的直径,AB是圆柱母线,设圆柱的表面积为S,则

答:这个圆柱形木块的表面积约为.

幻灯展示[例2]用一张面积为的正方形硬纸片围成一个圆柱的侧面,求这个圆柱的底面直径(精确到0.1cm).

请同学们任拿一正方形纸片围围看.哪位同学发现正方形相邻两边,一边是圆柱的什么线段,另一边是圆柱底面圆的什么?(安排中下生回答:一边是母线,另一边是底面圆周长.)

此题要求的是底面圆直径,所以只要求出正方形的什么即可?(安排中下生回答:边长.)边长可求吗:(安排中下生回答:可求,因为已知中给了正方形的面积.)

请同学们完成此题.(安排一中等生上黑板完成,其余在练习本上完成)

解:设正方形边长为x,圆柱底面直径为d.

则,依题意(cm)

答:这个圆柱的底面的直径约为9.6cm.

(四)总结、扩展

本节课学习了圆柱的形成、圆柱的概念、圆柱的性质、圆柱的侧面展开图及其面积计算.

然后按总结顺序;依次提问学生,此过程应重点提问中下生.

布置作业

教材P.187练习1、2;P.192中2、3、4。

九、板书设计

2.难点:准确进行圆锥有关数据与展开图有关数据的转化.

3.疑点及解决方法:由于学生空间想象能力较弱,对圆锥的侧面展开图是扇形,用扇形一定可以围成一个圆锥的侧面有疑惑,为此安排学生课前或课上或课下自己动手剪剪看或围围看,通过实践解决疑点.

教学步骤

(一)明确目标

在小学,同学们除了学习圆柱之外还学习了一个几何体——圆锥,在生活中我们也常常遇到圆锥形的物体,涉及到这些物体表面积的计算.这些圆锥形物体的表面积是怎样计算出来的?这就是本节课“7.21圆锥的侧面展开图”所要研究的内容.

(二)整体感如

和圆柱一样,圆锥也是日常生活或实践活动中常见物体,在学生学过圆柱的有关计算后,进一步学习圆锥的有关计算,不仅对培养学生的空间观念有好处,而且能使学生体会到用平面几何知识可以解决立体图形的计算,为学习立体几何打基础.

圆锥的侧面展开图不仅用于圆锥表面积的计算,而且在生产中常用于画图下料上,因此圆锥侧面展开图是本课的重点.

本课首先在小学已具有圆锥直观感知的基础上,用直角三角形旋转运动的观点给出圆锥的一系列概念,然后利用圆锥的模型,把其侧面展开,使学生认识到圆锥的侧面展开图是一个扇形,并能将圆锥的有关元素与展开图扇形的有关元素进行相互间的转化,最后应用圆锥及其侧面展开图之间对应关系进行计算.

(三)教学过程

[幻灯展示生活中常遇的圆锥形物体,如:铅锤、粮堆、烟囱帽]前面屏幕上展示的物体都是什么几何体?[安排回忆起的学生回答:圆锥]在小学我们已学过圆锥,哪位同学能说出圆锥有哪些特征?安排举手的学生回答:圆锥是由一个底面和一个侧面围成的,圆锥的底面是一个圆,侧面是一个曲面,从圆锥的顶点到底面圆的距离是圆锥的高。

[教师边演示模型,边讲解]:大家观察Rt,绕直线SO旋转一周得到的图形是什么?[安排中下生回答:圆锥.]大家观察圆锥的底面,它是Rt的哪条边旋转而成的?[安排中下生回答:OA]圆锥的侧面是Rt的什么边旋转而得的?[安排中下生回答,斜边],因圆锥是Rt绕直线SO旋转一周得到的,与圆柱相类似,直线SO应叫做圆锥的什么?[安排中下生回答:轴.]大家观察圆锥的轴SO应具有什么性质?[安排学生稍加讨论,举手发言:圆锥的轴过底面圆的圆心,且与底面圆垂直,轴上连接圆锥顶点与底面圆心的线段就是圆锥的高.]圆锥的侧面是Rt的斜边绕直线SO旋转一周得到的,同圆柱相类似,斜边SA应叫做圆锥的什么?[安排中下生回答:母线.]给一圆锥,如何找到它的母线?[安排中上生回答:连结圆锥顶点与底面圆任意一点的线段都是母线.]圆锥的母线应具有什么性质?[安排中下生回答:圆锥的母线长都相等.]

[教师边演示模型,边启发提问]:现在我把这圆锥的侧面沿它的一条母线剪开,展在一个平面上,哪位同学发现这个展开图是什么图形?[安排中下生回答:扇形.]请同学们仔细观察:并回答:1.圆锥展示图——扇形的弧长l等于圆锥底面圆的什么?扇形的半径其实是圆锥的什么线段?[安排中下生回答:扇形的弧长是底面圆的周长,即,扇形的半径。就是圆锥的母线]由于,圆锥半径已知则展开图扇形的弧长已知,圆锥母线已知则展开图扇形的半径已知,因此展开图扇形的面积可求,而这个扇形的面积实质就是圆锥的侧面积,因此圆锥的侧面积也就可求.当然展开图扇形的圆心角也可求.

[教师边演示模型,边启发提问]:如图,现在将圆锥沿着它的轴剖开,哪位同学回答,经过轴的剖面是一个什么图形?[安排中下生回答:等腰三角形.]这个等腰三角形的腰与底分别是圆锥的什么?[安排中下生回答:腰是圆锥的母线,底是圆锥的直径.这个等腰三角形的高也就是圆锥的什么?[安排中下生回答:高].这个经过轴的剖面,我们称之谓“轴截面”,在轴截面里包含了有关圆锥的所有元素:轴、高、母线,底面圆半径.这个等腰三角形的顶角,我们称之谓“锥角”,大家不难发现圆锥的母线、高、底面圆半径及

锥角构成了一个直角三角形,它给定旋转一周得圆锥的那个直角三角形,当然给定半径、母线;圆锥侧面展开图——扇形的面积、圆心角可求、因此可以说有关圆锥的计算问题,其实质就是解这个直角三角形的问题.

幻灯展示例题:如图,圆锥形的烟囱帽的底面直径是80cm,母线长50cm,(1)计算这个展开图的圆心角及面积;(2)画出它的展开图.

要计算展开图的面积,哪位同学知道展开图扇形的弧长是圆锥底面圆的什么?[安排中下生回答:周长.[展开图形的半径是圆锥的什么?[安排中下生回答:母线.]

请同学们计算这个展开图的面积.[安排一中等生上黑板完成,其余学生在练习本上做.]

解:圆锥底面圆直径80cm,底面圆周长cm,又母线长50cm展开图扇形的半径50cm,弧长cm。

哪位同学到前面计算一下这个扇形的圆心角?[安排一名中下生上前,其余在练习本上做]

解:且,,(度)。

同学讨论一下这个扇形怎样画?[安排一中上学生回答:首先画一个半径为50cm的圆S.然后用量角器作出72°的圆心角,则为弧的扇形,r就是所要画的展开图.]

幻灯展开例题:图中所示是一圆锥形的零件经过轴的剖面,它的腰长等于圆锥的母线长,底边长等于圆锥底面的直径,按图中标明的尺寸(单位mm),求:

(1)圆锥形零件的母线长l;

(2)锥角(即等腰三角形的顶角);

(3)零件的表面积.

图中给出等腰三角形的哪些尺寸?[安排中下生回答:高40,底边长34]哪位同学会计算圆锥形零件的母线长l?[安排一中等生上黑板,其余同学练习本上做][答案:mm]锥角打算如何求?[安排一中等生回答:解Rt求出,的对边DB,邻边SD已知选的正切.]请同学们求出.[安排一中等生上黑板,其余在练习本上做],[答案:]

零件的表面积等于什么?[安排中下生回答:圆锥的侧面积加上底面圆面积.]计算圆锥侧面积所需条件已具备了吗?计算底面圆面积所需条件呢?[安排中下生回答,]

请同学们把表面积求出来.[]

(四)总结、扩展

请同学们回顾一下,本堂课我们学了些什么知识?[可安排中下生相互补充完整:1.圆锥的特征;2.圆锥的形成及有关概念;3.圆锥的展示图;4.圆锥的轴截面。]

布置作业

教材P.191:练习1、2;P.193中5、6、7、8。

板书设计

第二课时

素质教育目标

(一)知识教育点

1.使学生了解圆锥的特征,了解圆锥的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆锥的侧面展开图是扇形。

2.使学生会计算圆锥的侧面积或全面积。

(二)能力训练点

1.通过圆锥的形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;

2.通过圆锥的面积计算,培养学生正确迅速的运算能力;

3.通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能

力.

(三)德育渗透点

1.通过圆锥的实物观察及有关概念的归纳向学生渗透“实践出真知”的观念;

2.通过应用圆锥展示图的计算解决实际问题,向学生渗透理论联系实际的观点;

3.通过圆锥侧面展示图的教学,向学生渗透化曲面为平面,化立体图形为平面图形的“转化”的观点;

4.通过圆锥轴截面的教学,向学生渗透“抓主要矛盾,抓本质”的矛盾论的观点.

(四)美育渗透点

通过学习新知,使学生进一步完整对几何美的认识,提高美育层次.

篇(7)

生:它们的底和高都相等。

师:同学们准备了沙子或米,请同学们自己动手试一试,你能不能利用这些工具来得出圆锥的体积与圆柱的体积之间的关系?

(小组活动)

师:同学们研究得特别认真,你们有什么发现吗?圆柱的体积和圆锥的体积有什么关系?

生1:我发现圆柱的体积是圆锥体积的3倍。

师:你是怎么发现的?

生1:我们把圆锥里面装满沙子倒在圆柱里面,倒三次才能倒满,说明,圆柱的体积是圆锥体积的3倍。

师:这是什么样的圆柱和圆锥?

生1:空的。

生2:等底等高的。

师(兴高采烈的):说得好,这是等底等高的圆柱和圆锥,虽再说说他们体积的关系?

生3:圆柱和圆锥等底等高,圆柱的体积是圆锥的3倍。

生4:等底等高的圆柱的体积是圆锥的3倍。

师:别的小组也是这样吗?

生(异口同声地):是。

……

评析:

改变学习方式是本次课程改革的核心,探究性学习作为新课程所倡导的学习方式,非常有利于挖掘学生的潜能,培养学生的创新意识和实践能力。然而,上面的探究,却大打了折扣,存在着几个明显问题。

1.目标不明。

探究性学习一般包括提出问题、确定策略、展开探究、交流结果几个过程。而在上面的片断中,问题的提出和确定策略两个环节全部省略。学生没有经过思索,只是稀里糊涂地按照老师的要求去操作,至于为什么这样做,学生根本不清楚。目标不明,导致了学生兴趣不浓,思维也根本没有被激活,整个探究的过程中学生只充当了被动的操作工。如果教学时先提出问题:探索圆锥的体积。在老师的启发引导下,学生们一定能够从形状的相似上发现圆锥和圆柱的关系最密切,可以借助圆柱来推导圆锥的体积公式。然后,让小组设计、交流研究方案,小组选择比较简便的操作方法展开探究。这样,学生的探究欲望会是多么强烈,探究的方法该是多么丰富多彩。

2. 空间太小。

探索的路总是充满艰辛的,正因为如此,探究的过程才更有魅力。可是,本节课的探究却是格外的一帆风顺,原因在于空间太小。等底等高的空心圆柱和圆锥,学生只需要装装沙子,就可以一下子发现教师需要的结果,没有一点波折,在学生的心里也就激不起什么波澜,狭窄的探究空间,还使得结论中的关键因素“等底等高”没能引起学生的主意,是在老师的追问、强调中学生才意识到的。其实探究中,老师可以选择一些非等底等高圆锥和的圆柱,这样,有的小组一定能得到3倍的结论,而有的小组一定是得不出3倍结论的:或许是圆锥和的圆柱的体积一样多,或许是4倍、5倍关系。在这种情况下,让学生观察实验所使用的工具,在分析比较、互动交流中学生恍然大悟:只有当圆锥和圆柱等底等高时,他们的体积关系才会出现三分之一(或者3倍)的关系。这样的设计,学生的思维才能在广阔的空间内自由驰骋,碰撞出智慧的火花,不仅发现规律,还能积累探究的经验,体验创造的乐趣,促进三维目标的有效达成。

3.没有适时的评价。

篇(8)

1.提出问题 鼓励猜想

因为学生已认识了圆柱和圆锥,并学会了计算圆柱的体积,所以教师直接出示一组圆柱和圆锥模型,通过现场测量知道它们的底面直径都是厘米,高都是15厘米,于是归纳出它们之间的关系是“等底等高”关系。接着由学生算出圆柱体积是3.14×(10÷2)2×15=1177.5(立方厘米)≈1200(立方厘米)。那么圆锥的体积又是多少呢?教师提出挑战性问题,鼓励学生大胆猜想。同学们情绪高涨,都争先恐后地发表自己的意见。

生1:我认为圆锥体积肯定小于1200立方厘米。因为它们的底面积相等,高又相等。现在圆锥上端被削成了尖的,减少了很多体积,所以圆锥体积肯定小于等底等高的圆柱体积。估计一下:大概削去了原来体积的一半,我猜是600立方厘米左右。

生2:我同意上面的观点,但我估计削去的比一半少,圆锥体积可能有700立方厘米。

生3:我认为削去的比一半多,圆锥体积大约是500方厘米左右。

生4:我认为圆锥体积只有400立方厘米左右。

……

学生七嘴八舌,各抒己见。教师做了统计,全班52人中,认为圆锥体积大于等底等高圆柱体积一半的仅2人,约等于一半的有3人,小于一半的有47人,其中猜想圆锥体积约400立方厘米的有30人。他们中有的已在课前预习课本,有的是在猜想时“偷”看书。这是件大好事,因为课堂教学环境紧逼学生产生了强烈的学习愿望,主动求知已成为学生的内需,他们迫切需要得到正确的结论。

2.实验验证 挑战论证

教师分别揭去两个模型的各一个底盖,使两个模型成为一组量筒,然后提供水一盆,由两名学生进行实验。证实课本上得结论是正确的:等底等高的圆柱体积是圆锥的3倍,或者说圆锥的体积等于和它等底等高的圆柱体积的1/3。

当一场风波平息,学生的学习愿望刚得到满足时,教师却又提出了新的挑战性问题:出示一组铁制的圆柱和圆锥模型,并现场量得它们的底面直径均为4厘米,高为6厘米。它们的体积是否还是1/3关系,又该如何验证呢?

生5:我认为仍是1/3关系,可以通过“称”的方法来证明,因为同种原材料做成的两个物体,如果它们的体积是1/3关系,重量一定是3倍关系。于是教师提供案秤一台,由他来协助完成实验任务。先称得圆柱约重588克,然后教师鼓励学生先猜一猜“圆锥重量约是多少克?”当学生猜出是196克并说明理由后,再称出重量验证猜想正确,从而再次证明等底等高的圆柱和圆锥体积确实是3倍关系。

篇(9)

第1课时

面的旋转

教学内容:六年级下册第一单元P2内容

教学目标:

知识与能力:通过初步认识圆柱和圆锥使学生感受到数学与生活的密切联系。

过程与方法:通过观察和动手操作等,初步体会“点、线、面、体”之间的关系,发展空间观念。

情感态度和价值观:通过由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特征,知道圆柱和圆锥的各部分名称。

教学重点:

1、联系生活,在生活中辨认圆柱和圆锥体的物体,并能抽象出几何图形的形状来。

2、通过观察,初步了解圆柱和圆锥的组成及其特点。

教学难点:通过观察,初步了解圆柱和圆锥的组成及其特点。

教学用具:各种面、圆柱和圆锥模型

法:引导法

法:自主探究

教学过程:

一、活动一

如图:将自行车后轮架支起,在后车车条上系上彩带。转动后车轮,观察并思考彩带随着车轮转动后形成的图形是什么?

学生根据发现的现象(彩带随着车轮的转动形成了圆)说明自己的想法,并体验:点动成线

二、活动二

观察下面各图,你发现了什么?

学生发现:

风筝的每一个接连起来看,形成了一个长方形;雨刷器扫过后形成一个半圆形,旋转门转动后形成圆柱。

学生体验:线动成面

三、活动三

如图:用纸片和小棒做成下面的小旗,快速的旋转小棒,观察并想象旋转后形成的图形,再连一连。

1、学生实际动手操作,然后根据想象的图形连线。

1——1(圆柱)

2——3(球)

3——4(圆锥)

4——2(圆台)

2、介绍:圆柱、圆锥、球的名称。并请学生根据自己的观察介绍一下这几个立体图形的特点。指名学生说。

小结:我们学过的长方体、正方体都是由平面围成的立体图形,今天我们学习的圆柱、圆锥和球也是立体图形,只是与长方体、正方体不同,围成的图形上可能有曲面。

四、找一找

请你找一找我们学过的立体图形

五、说一说

圆柱与圆锥有什么特点?(小组的同学互相说一说)

圆柱:有两个面是大小相同的圆,有另一个面是曲面。

圆锥:它是由一个圆和一个曲面组成的。

六、认一认

圆柱的上下两个面叫做底面,它们是完全相同的两个圆。圆柱有一个曲面,叫做侧面。圆柱两个底面之间的距离叫做高。

圆锥的底面是一个圆。圆锥的侧面是一个曲面。从圆锥顶点到底面圆心的距离是圆锥的高。(教师画出平面图进行讲解。并在图上标出各部分的名称。)

七、练一练

1、找一找,下图中哪些部分的形状是圆柱或者圆锥?再和同学们说一说生活中哪些物体的形状是圆柱或者圆锥。

2、下面图形中是圆柱或圆锥的在括号里写出图形的名称,并标出底面的直径和高。

篇(10)

中图分类号:G623 文献标识码:A

深度学习是相对于浅层学习所提出的一个概念,是一种基于理解的学习,它强调学习者要批叛地学习新知识,把它们纳入原有的认知结构,从而帮助决策,解决问题。深度学习鼓励学生积极地探索、反思和创造。与浅层学习相比,它凸显了学生由被动学习向主动学习的转化,关注了学生发现问题,提出问题,分析问题,解决问题的能力。下面,结合《圆锥的体积》一课的教学,谈谈教师如何引导学生进行深度学习。

1激发学生主动探究的欲望

赞可夫说过:“单纯地听教师讲解,不能调动学生学习的精神力量。”教师的主导作用就在于激发他们的学习热情,促使其积极主动地探索知识。所以,上课伊始,教师可以利用新旧知识的连接点激发学生对圆锥体积探索的兴趣:(1)让学生说说长方体、正方体、圆柱体积的计算方法。因这三个物体的体积都可以用底面积乘高来进行计算,这个问题为下面学生的猜想作了铺垫。(2)让学生猜想:怎样计算圆锥的体积?学生很自然地想到用“底面积乘高”的方法来计算。但有的同学提出了质疑:底面积乘高是计算圆柱体积的,很明显,圆锥体积不能用同样的方法来计算。(3)在学生的讨论中,新的问题油然而生:那么怎样计算圆锥的体积?圆锥的体积与圆柱的体积有什么关系呢?这几个问题激发了学生探究的兴趣,学生有了问题才会有探索,只有主动探索,才会有创造。

2引导学生真正参与探究过程

利用学生已有认知经验,组织学生研究是学生自主学习的良好方式,但在课堂上往往受时空的限制,有时很难有效地完成,要么蜻蜓点水,要么变成个别同学的研究。对于圆锥体积的计算方法,在课堂教学中,很多老师常常是拿来一个圆柱容器、一个与圆柱容器等底、等高的圆锥形容器,老师演示:往圆锥容器中装水或者谷粒,装满后倒入圆柱容器中,让学生仔细观察几次能装满。老师装完,学生也数完,需三次才能装满,于是师生共同得出结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一。从课堂教学来看,只是老师在做,学生在看,学生只是一个旁观者,没有参与到研究的过程中去,这种学习是机械地、被动地,是一种浅层的学习。

苏霍姆林斯基说过:“在的人内心深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者,研究者、探索者,而在儿童的精神世界中这种需要特别强烈。”只有让每个孩子都动起来,在动手做的过程中,引发思考、启迪思维,学生才会进行深度学习。

我们可以设计这样的探究活动:

2.1课前制作容器

课前让学生用硬纸板制作一个圆柱容器,再做与这个圆柱等底等高、等高不等底、等底不等高,不等底不等高的圆锥容器各一个。别小看这简单的制作活动,在制作容器的过程中,学生需要测量、计算、剪、粘,在动手、动脑的过程中,对圆锥、圆柱的底面积和高又加深了认识,对“等底等高”这个概念有了深入的认识,为新课的学习打下了基础。

2.2课堂演示操作

课堂上以小组为单位,让每个学生都亲自动手操作:用各种圆锥容器为测量工具,往圆柱容器中装谷粒,记录下装满的次数,并填好表格。

将与圆柱与关的四种圆锥罗列出来,让学生分别都动手做一做,旨在让学生明确“与圆柱等底等高”这一前提的唯一性。

2.3组织学生交流

操作完成后组织学生交流各组操作后的发现,学生从自己小组里的信息可发现,只有与圆柱等底等高的圆锥需3次才能将圆柱容器装满,而其它的次数各不相同,这是不是偶然现象呢?教师再汇总全班各小组的数据让学生观察并思考:观察表中数据,会发现什么?学生会发现:所有组与圆柱等底等高的圆锥都需要3次才能将圆柱装满,而其它圆锥装的次数各不相同。

这样在课堂上组织学生交流分享,碰撞研究火花,学生在独立研究的基础上,与同伴在共赢共进中进行深度学习。

2.4启发思考,得出结论

引导、启发学生思考:你发现了什么?圆锥体积和什么样的圆柱体积有关系呢?有什么关系呢?怎样计算圆锥的体积呢?学生从交流中自己会发现:圆锥体积只和与它等底等高的圆柱体积有关系,而且总是这样圆柱体积的三分之一,于是利用圆柱的体积公式推导出:圆锥的体积=底面积赘住?

学习情境的真实展现,学生学习过程的真实展开,是学生自我建构知识结构的必备条件,只有真正经历用已有数学活动经验,不断解决新问题的过程,学生的深度学习才有生命力。

篇(11)

在教学中,创设一个轻松,愉快,生动和谐的教学情境,学生积极主动地参与活动,全身心投入学习,达到活跃学生思维,增进知识理解,促进技能发展和素质的提高。因此,小学数学教学要培养学生想学――会学――好学――竞争的能力和习惯,这样要求教师在教学中充分发掘教材的德育因素和学生的智力因素,使学生了解数学在生产和生活中的重要作用,明确学习目的。形成学习动机,同时抓住学生理解知识的关键和分析,思考问题的焦点,启发学生思维,激发学生情感的共鸣,使学生进入积极思考,发言争辩的学习情景。

要想学生想学,教师就必须善诱会问,提问带思维成分,请学生回答问题应带鼓励性 ,“学起于思,思源于疑”。思维总是从问题开始,创设好问题前景,设疑激趣,就可以调动学生的积极性,诱发思维。在教学圆锥体积时,教师先出示等底等高的圆柱和圆锥,让学生观察其特点并回答问题,这个圆锥和圆柱的高相等吗?底面积相等吗?学生回答出高相等,底面积也相等后,教师在进一步提问:这个圆锥和圆柱的体积有什么关系呢?这时学生就会积极思维,踊跃发言。有的认为圆锥的体积是圆柱的三分之一,有的认为是二分之一,还有的认为不一定,这样就水到渠成,自然地把学生引入学习情境中。

要使学生会学,好学,教室必须善于引导,设置的问题和教学的引入本身应具有趣味性。在教学圆锥体积时,教师在学生回答圆锥的体积等于和它等底等高的圆柱体积的三分之一或二分之一时,不必先忙于订正答案,而是把全班分成若干小组,让他们自己用等底等高的圆锥形容器教具装沙的实验。学生实验后,明确了圆锥体积等于和它等底等高的圆柱体积的三分之一。在这一教学中,学生以具体的,实在的亲手实践操作来认识事物,获取知识,体验了学习活动的乐趣,感受到自己成功的喜悦。要使学生竞争能力得到发展,教师的教学应留有余兴,设置一定的坡度,使学生有问题可思,各抒己见,求异创新。在教学时,教师在学生知道圆锥的体积等于和它等高的圆柱体积的三分之一的基础上,出示练习题如下:

(1)有一个圆柱和圆锥,底面积相等,高也相等,圆锥的体积是5立方米,圆柱的体积是多少?

(2)有一个圆柱和一个圆锥的体积和底面积都相等,圆柱的高是10厘米,圆锥的高是多少厘米?

(3)有一个圆柱的圆锥的体积,高都相等,圆柱的底面积是9平方厘米,圆锥的底面积是多少平方厘米?

让学生进行讨论,先算出答案,在归纳出一般规律,教师在学生经过一番激烈的争论后,让他们各抒己见,然后教师再作分析,评价。

(1)等底等高的圆锥体积等于圆柱体积的三分之一。

(2)体积和底面积都相等,圆锥的高是圆柱高的3倍。