绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇隧道论文范文,希望它们能为您的写作提供参考和启发。
2009年6月底,由于工期紧迫,施工单位提出将隧道原设计厚40cm初衬模筑混凝土变更为厚30cm喷射混凝土,混凝土强度参数不变,且挂钢筋网,初期支护钢拱架型号Ⅰ16变为Ⅰ20b,增强施工灵活性,较大程度地加快施工进度。业主、监理同意,并依据2009年6月25日土工实验报告中的数据,设计单位同意变更上述隧道初期支护相关施工图。
隧道坍塌及分析
隧道初期支护坍塌施工单位由隧道出口方向进行洞身开挖施工。2009年8月3日晚,当施工至K1+043时,K1+077—K1+043段发生洞顶塌方,地表出现不同程度沉陷。塌方时,正值工人休息,掌子面没有施工人员,无伤亡。原因分析a)据现场踏勘,从工程施工的角度出发,该隧道为小导管注单液浆超前支护,施工中小导管注浆压力不足,未能形成拱顶的环效应,另外施工虽采用上下台阶法施工,但上台阶设置的临时仰拱未能及时跟进或施工质量不高,从而使初期支护形不成封闭环,加之上台阶工字钢落脚处地质条件差,随着围岩应力的释放以及变形的积累,极易产生初期支护下沉变形,造成坍塌。b)补充地质勘察报告《阳城县北留镇隧道工程土体物理力学性质检测报告》(2009.8)认为勘探深度范围内地基土沉积时代成因类型主要为第四系中更新统红色粉质黏土。地下水埋藏深度距地表19.0~25.0m,水位标高652.46~657.67m,为孔隙潜水类型,来源为大气降水。场地环境类别为Ⅲ类,场地土对混凝土结构及钢筋混凝土结构中的钢筋均不具腐蚀性;场地土体无膨胀性,竖向收缩率0.40~4.05。坍塌前一周出现过强降水,经土质分析,含水量随深度的增加而增大,最小含水量7.3%,位于最上部;最大含水量为26.4%;地层中含水量较大,致使土体的抗压和抗剪性降低,是造成隧道洞顶塌方的又一重要因素(见图2)。
处治方案及施工措施
综合分析隧道洞顶坍塌各种因素,并根据补充钻探资料及现场观测,通过深入研究和仔细论证,本着处理措施应安全、经济、可行的原则,提出隧道塌方段地表和洞内注浆加固的综合处治方案。初衬已封闭的段落对初衬已封闭的段落,马上做好二次衬砌,进一步保证隧道的安全。对作了拱部初期支护,但未作仰拱的段落,拱脚用φ42、长4.0m的锁脚锚管进行注浆加固,以免造成更大的损失。锁脚锚管注水泥—水玻璃双液浆,注浆压力不小于1.0MPa;双液浆参数为水泥∶水玻璃=1∶0.5,水泥浆水灰比为1∶1,水泥标号为42.5。隧道塌方段地表塌陷处理a)先在洞内既有掌子面插φ42×6和φ89×7花管,长6.0m,外插角分别为10°、20°,水平搭接不小于1.0m,并注双液浆,间距1.0m,呈梅花型布置,把隧道内塌落土体整体加固。b)对隧道山顶水厂道路下土体进行注浆加固,并采取足够的支撑措施以保证道路和施工的安全。c)在塌陷处适当放缓边坡开挖至距地表深约8m处,做矢跨比为1/12的土牛;开挖时一定要注意边坡的稳定,必要时要对边坡进行加固。d)在土牛上,做厚为70cm的钢筋混凝土防护罩,防护罩四边要坐在开挖面四周没有扰动的原状土上。防护罩采用C30现浇钢筋混凝土,从北向南分段连续施工,每次进度沿路线方向长6.0m。e)防护罩四周沿路线方向每5.0m预留一个直径10cm的孔,以便隧道顶部塌陷土层有空洞时注入粉煤灰等轻质材料填充密实。f)防护罩四周脚部按梅花型设置φ42、长5.0m、纵向间距0.5m的锁脚锚管,并双液注浆,端部伸入防护罩中不小于0.5m。注浆后与防护罩中钢筋焊接,最后在防护罩四脚处回填高1.0m的浆砌片石,顶紧以稳定四周土体。g)紧靠山顶水厂道路一侧的防护罩一定要坐于道路下原状土上,并且在防护罩上砌石顶紧道路下土体。图2K1+040处勘探孔含水量变化曲线5.3隧道内塌方段处理a)在掌子面固结的土体,保留中部坡道,不对称开挖两侧土体,新开挖出的掌子面用蛇皮袋装土分两层台阶垒防护墙,台阶宽度要不小于1.0m。b)垒好防护墙后,不对称施作K1+077—K1+083段已作拱部支护而未塌落的两侧边墙和仰拱。仰拱采用C25模筑现浇混凝土,拱脚混凝土底部基础要扩大,以增加接触面积,并增设支撑垫板来增强拱脚承载力,减少拱顶下沉。墙角用φ42、长4.0m的锁脚锚管,每处2根。c)在离隧道洞顶塌方段较近时,停止前进。施作该段二次衬砌仰拱混凝土,预留两侧钢筋,并施作片石混凝土回填至排水沟底部。d)对于K0+965—K1+077未开挖和塌陷段落,采用双侧壁导坑上下微台阶先墙后拱开挖法。并辅以超前中、小导管及锁脚锚管等措施,按照“管超前、短进尺、少扰动;强支护、早封闭、快成环;勤量测、紧衬砌”的原则,各道工序紧密衔接,环环相扣,随挖随支,保证隧道初期支护的结构稳定与施工安全(见表1)。隧道二次衬砌配筋二次衬砌配筋根据不同情况分为4段进行:K0+965—K1+030段、K1+030—K1+083隧道冒顶段、K1+083—K1+088二衬加强段、K1+088—K1+120段。其中K0+965—K1+030、K1+030—K1+083两段,二次衬砌为全封闭式配筋;K1+083—K1+088、K1+088—K1+120两段,由于隧道底部现已片石混凝土回填接近路面标高,所以仅在片石混凝土回填顶面以上二次衬砌配筋,并且在墙脚设置φ42、长4.0m的锁脚锚管。
1)对围岩变形的判断与控制。
对于软岩隧道围岩变形的研究主要集中在三个方面:a.从理论方面对变形机理进行研究;b.选择合理的施工工法对围岩变形进行控制;c.运用有限元或其他数值模拟的手段对围岩的变形量和变形趋势进行预测。从众多的学术论文和科研成果中不难发现,对于围岩变形的机理多是采用连续性介质理论进行分析,而实际工程中的围岩是非连续的,它是岩块和结构面在三维空间的一种非定向关系。尤其是对于地质状况比较复杂的软弱围岩,都是由多种物理成分组成的,且各物理成分的大小、多少及分布具有很大的随机性。但是,在实际的研究和应用中,例如采用数值模拟的方法对软岩隧道围岩变形进行分析时,又必须运用岩体的本构关系,这本身就是存在问题的,更不要说计算结果的准确性了。不论是理论分析还是数值模拟都没有办法对围岩的变形量进行准确的判断。这将引起另外一个问题,就是在采取控制变形措施时,通常采用的是依据相似工程经验制定施工方案,并没有针对不同的变形量采取相应的控制措施,因此变形控制措施也具有一定的盲目性。另外,隧道施工中变形可以达到1.0m甚至更大,软弱围岩变形本质上属于大变形问题,然而岩体力学中使用的弹塑性变形理论虽然对材料的非线性进行了考虑,但是严格意义上仍属小变形理论。
2)对合理支护时机的探讨。
隧道二次衬砌施作时机始终是隧道界讨论的热点问题,二次衬砌的支护时机是保证二次衬砌长期稳定的关键。特别是对于软岩大变形隧道,如果二次衬砌施作过晚,则可能造成初期支护变形过大而无法控制,以致隧道失稳;但如果施作过早,则不利于地应力的释放和充分发挥围岩的自稳能力,从而使二衬受力过大而导致开裂,降低了隧道结构稳定性。因此,合理确定二次衬砌施作时机是保证隧道施工阶段和长期运营阶段安全性的关键。但是现阶段,对于隧道二次衬砌支护时机的研究仍然没有形成系统的体系。研究者多根据具体的工程背景选择不同的岩石弹塑性模型,采用的确定合理支护时机的判定方法也各有不同。对于二衬支护时机的影响因素的分析也多是针对单一影响因素,并没有综合考虑。
2软岩隧道的发展与展望
为了满通建设的需要,将不可避免的遇到更多的软岩隧道工程。围岩大变形的控制问题仍然是未来软岩隧道工程需要解决的关键问题。从根本上讲要更深入的研究围岩的变形机理,找出适用于实际工程地质状况的围岩的本构关系。在施工的过程中,超前地质预报要贯穿整个隧道的开挖过程,监控测量要及时跟进。对于具有代表性的工程要完善施工工法,以便以后类似工程经验借鉴。隧道是地层围岩和支护结构共同组成的复杂受力体。支护是一个过程,一个好的支护方案要让这一过程与围岩变形过程相协调。考虑到软弱围岩的蠕变特性,围岩的自稳能力是与施加相关的,因此二次衬砌的支护需要一个合理的时机。反过来理解,如果要确定合理的二衬支护时机,首先要对围岩的蠕变特性和变形机理进行充分而深入地分析,只有在此基础上,才能选择适当的支护时机和支护形式以及确定合适的支护参数。由于目前的研究多针对二次衬砌的支护时机探讨,应该将整个支护过程统一起来,形成与不同围岩级别、不同断面尺寸、不同开挖方式、不同支护参数相对应的系统的支护方案,以及更完善的施工工法。
1)对围岩变形的判断与控制。对于软岩隧道围岩变形的研究主要集中在三个方面:
a.从理论方面对变形机理进行研究;
b.选择合理的施工工法对围岩变形进行控制;
c.运用有限元或其他数值模拟的手段对围岩的变形量和变形趋势进行预测。从众多的学术论文和科研成果中不难发现,对于围岩变形的机理多是采用连续性介质理论进行分析,而实际工程中的围岩是非连续的,它是岩块和结构面在三维空间的一种非定向关系。尤其是对于地质状况比较复杂的软弱围岩,都是由多种物理成分组成的,且各物理成分的大小、多少及分布具有很大的随机性。但是,在实际的研究和应用中,例如采用数值模拟的方法对软岩隧道围岩变形进行分析时,又必须运用岩体的本构关系,这本身就是存在问题的,更不要说计算结果的准确性了。不论是理论分析还是数值模拟都没有办法对围岩的变形量进行准确的判断。这将引起另外一个问题,就是在采取控制变形措施时,通常采用的是依据相似工程经验制定施工方案,并没有针对不同的变形量采取相应的控制措施,因此变形控制措施也具有一定的盲目性。另外,隧道施工中变形可以达到1.0m甚至更大,软弱围岩变形本质上属于大变形问题,然而岩体力学中使用的弹塑性变形理论虽然对材料的非线性进行了考虑,但是严格意义上仍属小变形理论。
2)对合理支护时机的探讨。隧道二次衬砌施作时机始终是隧道界讨论的热点问题,二次衬砌的支护时机是保证二次衬砌长期稳定的关键。特别是对于软岩大变形隧道,如果二次衬砌施作过晚,则可能造成初期支护变形过大而无法控制,以致隧道失稳;但如果施作过早,则不利于地应力的释放和充分发挥围岩的自稳能力,从而使二衬受力过大而导致开裂,降低了隧道结构稳定性。因此,合理确定二次衬砌施作时机是保证隧道施工阶段和长期运营阶段安全性的关键。但是现阶段,对于隧道二次衬砌支护时机的研究仍然没有形成系统的体系。研究者多根据具体的工程背景选择不同的岩石弹塑性模型,采用的确定合理支护时机的判定方法也各有不同。对于二衬支护时机的影响因素的分析也多是针对单一影响因素,并没有综合考虑。
2大跨软岩隧道的发展与展望
为了满通建设的需要,将不可避免的遇到更多的软岩隧道工程。围岩大变形的控制问题仍然是未来软岩隧道工程需要解决的关键问题。从根本上讲要更深入的研究围岩的变形机理,找出适用于实际工程地质状况的围岩的本构关系。在施工的过程中,超前地质预报要贯穿整个隧道的开挖过程,监控测量要及时跟进。对于具有代表性的工程要完善施工工法,以便以后类似工程经验借鉴。隧道是地层围岩和支护结构共同组成的复杂受力体。支护是一个过程,一个好的支护方案要让这一过程与围岩变形过程相协调。考虑到软弱围岩的蠕变特性,围岩的自稳能力是与施加相关的,因此二次衬砌的支护需要一个合理的时机。反过来理解,如果要确定合理的二衬支护时机,首先要对围岩的蠕变特性和变形机理进行充分而深入地分析,只有在此基础上,才能选择适当的支护时机和支护形式以及确定合适的支护参数。由于目前的研究多针对二次衬砌的支护时机探讨,应该将整个支护过程统一起来,形成与不同围岩级别、不同断面尺寸、不同开挖方式、不同支护参数相对应的系统的支护方案,以及更完善的施工工法。
1概述:
圆梁山隧道全长11068m,是新建铁路渝怀线上最长的单线隧道,隧道主要穿越毛坝向斜和桐麻岭背斜,其中毛坝向斜高压富水区总长2200m,向斜翼部最大埋深780m,核部最小埋深550m。该段岩溶和岩溶水异常发育,岩溶、高压富水是地质难题。根据设计资料,毛坝向斜段正常涌水量为55000m3/d,,最大涌水量83000m3/d,且洞身处存在4.6MPa的高静水压力。毛坝向斜高压富水区大量排水将会引起地下水位大幅度下降,甚至可能被疏干,直接影响居民的生产、生活用水,也可能引起局部地面的塌陷或开裂。为了减少隧道修建对周围环境的影响。针对圆梁山隧道高压富水区采取了“注浆堵水,限量排放”的施工原则。
2开挖面超前地质探测及涌出物分析
为确保圆梁山隧道的安全优质、快速顺利施工,有效地采取施工方案,选择合理的注浆方法,在圆梁山隧道施工中采取了多种地质超前预测预报手段,如超前探水孔钻探、红外线、TSP地质雷达超前地质预测预报和地质素描等手段,通过对地质预报信息的综合分析,可以比较准确地判明前方地质情况。
2.1探测过程
圆梁山隧道出口端平导掘进到毛坝向斜高压富水区后,独头掘进达7133米,并在PDK355+058处开始进行反坡开挖,为了确保施工安全,每30m进行一次超前钻孔,以探明前方地质情况,圆梁山隧道出口端平导开挖至PDK355+019时,于2003年6月27日6点开始在掌子面采用MKD-5S地质钻机进行常规超前探测工作。超前探孔布置如图1所示。
图1探水孔横断面布置图2注浆段地质情况示意
Fig.1Layoutofwater-exploringholesFig.2Geologicprofileofgroutingsegment
在探水孔施作过程中,探1#在整个钻进过程中,岩粉为深灰色颗粒,有白色方解石颗粒,有刺激性气体逸出;钻至3m处为破碎岩层,宽度约0.2~0.3m,钻孔内有水涌出,涌水量为20m3/h,充填有黄泥;8~40.6m岩粉为深灰色,较坚硬,局部有破碎灰岩,发生卡钻。探2#有少量水,钻进过程岩石破碎。探3#孔深30.20米,当探水孔钻至15m处有0.3~0.5m岩溶管道,有岩溶水涌出,充填有泥砂和粘土,并含少量砾石,6月27日测得钻孔涌水压力为1.4MPa,全孔涌水量实测100m3/h左右。于2003年6月28日结束探孔。通过探孔情况和地质资料分析掌子面前方3m处有一宽度较小的破碎带,在15m处发育一小型岩溶管道。由于泥砂太多及停电影响,同时洞外大量降雨,导致探3#孔涌水量及水压急剧增大,7月5日涌水量增大到200m3/h左右,由于此处反坡开挖,抽水设施由于泥砂和停电的影响导致掌子面大量涌水不能抽出,引起掌子面淹没。后加快抽水,将掌子面水用两路Φ150mm钢管引出,并在掌子面施作了模筑混凝土封闭掌子面,止浆墙厚2m,又因水大混凝土密封困难改为3m。掌子面稳定后又进行了TSP地质预测预报和红外线超前探水等探测和验证。根据以上地质预测预报成果可判定前方地质条件大致如图2所示。
2.2涌出物分析
2003年6月29日现场采集涌出物并对涌出物进行筛分试验,测试结果图3、图4示。
图3涌出物成份比例图4涌出物筛分曲线
Fig.3Proportionofgushed-outmaterialsFig.4Sievingcurveofgushed-outmaterials
由图3、图4来看:涌出物中粉砂、中砂占86%,而粗砂和砾石等占13.8%,砾石长约3~10mm,说明涌出物在岩溶管道中经过长期迁移和冲蚀作用下被磨圆和筛选,因而隧道断面内岩溶管道或溶隙最大直径大于10mm,涌出物累计筛余百分率曲线比较平缓,可见原地层充填物在未受到压力水冲出前,其级配相当合理,呈较致密结构。从涌出物86%为中细砂可以看出,在岩溶形成过程中,由于地下水的溶蚀作用,泥砂被搬运填充在灰岩裂隙中,后经不断溶蚀,逐渐形成岩溶管道。一旦超前钻孔或隧道开挖揭穿岩溶管道容易发生涌水突泥。
2.3涌水量及水压测试
在超前探测和注浆过程中对平导掌子面涌水量进行了测试和水压测试如图5、图6所示。由图5可见:在进行顶水注浆前平导掌子面处涌水量是急剧增大的,然后逐渐趋于稳定,最大涌水量200m3/h;由图6可见:在封堵掌子面后涌水压力不断上升,最后稳定在2.4MPa。
图5掌子面涌水量变化曲线图6水压力变化曲线
Fig.5CurveofwatersprayingonthefaceFig.6Curveofhydraulicpressure
3注浆设计及施工
3.1注浆方案的确立
根据超前探孔过程中涌水状况,从安全性、经济性考虑,结合该工程实际情况,针对前方出现的岩溶管道水,经过反复研究,制订了“以堵为主”的施工原则,采用了“注浆堵水,封堵岩溶管道,加固破碎地带”的施工方案。根据溶洞区工程及水文地质复杂,选用“深浅孔结合复式全断面注浆”堵水措施。
3.2顶水注浆和小导管周边注浆
根据二院要求及现场实际,在掌子面施作2.5~3m厚砼止浆墙,两个探水孔的孔口管预埋入止浆墙,然后对其进行顶水注浆。由于砼止浆墙与开挖面周边密封施做的不够严密,导致顶水注浆时周遍跑浆严重,于是决定在止浆墙周边进行小导管注浆。如图7所示。
⑴小导管注浆管长L=3m,采用Φ32mm焊接钢管。注浆管前端加工成圆锥状并封死。花管部分长2m,在花管段上间隔30mm~40mm,按梅花型布设Φ4~6mm的溢浆孔。管尾部分采用两道Φ8mm的圆型钢筋焊箍,其中一道用于缠上60cm左右的麻丝后用于止浆,另一道采用丝扣和注浆管连接。
⑵小导管沿隧道开挖轮廓线布置,略向外倾斜,外插角为50~100。
⑶注浆材料采用水泥-水玻璃双液浆和HSC浆液,其配比为W:C=0.8:1,C:S=1:1,凝胶时间为30s~3min。超细水泥MC浆,其水灰比为1:1~0.6:1,HSC浆液水灰比为1:1~0.8:1,凝胶时间为30min~60min。
⑷注浆结束标准采用定压结合定量的原则,注浆终压为2~3MPa,单孔注浆量为0.2~0.4m3。
3.3超前预注浆加固
全断面超前预注浆是在整个断面上布孔,通过注浆形成截水帷幕,并加固周围岩体,注浆加固范围为隧道开挖面及开挖轮廓线外5.0m,注浆段长30m,即PDK354+020~9DK355+990。注浆设计如图8、9所示。
⑴注浆孔采用MKD-5S型钻机成孔。开始用大直径钻头钻进2m后安设φ108mm无缝钢管作为孔口管。再改用φ90mm钻头钻至15~30m。孔口管长度150cm,孔口处缠60cm的麻丝。并用HSC浆锚固。
⑵钻孔深度以达到钻入岩层2~3为原则,采用前进式分段钻进和注浆工艺。
⑶在岩溶管道段注浆是以堵水加固为目的,在岩石破碎带(少量水)注浆是以加固地层为目的。因此在浆液配置及单孔注浆顺序上予以区别对待。
①用引水管将水引出后,封闭掌子面。注浆时关闭阀门,形成静水压力注浆。
②对破碎无水岩层,初始注浆可注入稀浆(1.5:1~1:1),因稀浆中的水泥颗粒在脉冲压力的作用下对冲开及沟通裂隙能够起到剂的作用,一旦裂隙冲开后即进入正常的双液浆注浆。
③对于涌水量较大岩层,凝胶时间可适当缩短,使浆液进入地层后能较快凝固,避免浆液随水流失,达到控制注浆的目的。
图8超前预注浆孔位布置(单位:cm)图9超前预注浆纵断面布置(单位:cm)
Fig.8Crosssectionofadvancedpre-groutingholesFig.9Longitudinalsectionofadvancedpre-grouting
3.4注浆材料
注浆材料采用普通水泥单液浆或普通水泥—水玻璃双液浆(CS)。
注浆孔无水时采用普通水泥单液浆,水灰比W:C=0.8:1~1:1;有水孔则采用单液水泥浆、普通水泥—水玻璃双液浆(C—S浆)和超细水泥浆、HSC浆,根据水量大小选择配比和浆液凝胶时间。涌水量小时,水泥C浆:水灰比W:C=1.:1~0.8:1,C:S=1:1~0.8:1,水玻璃S浆浓度30Be'。孔内水量较大时,水灰比W:C=0.8:1~0.6:1,C:S=1:0.3~0.6,水玻璃S浆浓度35~40Be',当双液注浆压力上升到3MPa左右时,开始注入超细水泥(MC)或HSC浆,直到达到设计终压7MPa。
3.5注浆工艺
采用前进式分段注浆工艺,钻一段,注一段。分段长度根据钻孔情况确定,若出现大的涌水或泥砂(Q>10m3/h)则按1~2m分段;若涌水涌泥(砂)较小(Q<10m3/h)或轻微卡钻,则钻孔注浆段长度可适当加大至3~5m。如无涌水涌泥(砂)和卡钻的情况发生,则可采用全孔一次性注浆方式进行。以保证注浆质量和减少扫孔作业,增加作业时间和效率。
3.6注浆参数
注浆参数主要依据设计加固范围和经验选定,本段注浆纵向加固长度30m,主要参数如表1所示
表1注浆参数表
Table1Parametersofgrouting
参数名称
全断面深孔超前预注浆
备注
加固范围
掌子面及开挖轮廓线外5m
钻孔深度
15m~30m
浆液扩散半径
2m
凝胶时间
30s~2min30s
普通水泥—水玻璃双液浆
注浆速度
10~100L/min
注浆分段
岩层完整且有水3~5m、
岩层破碎且有水1~2m
根据钻孔情况确定
注浆终压
6~9MPa
单段注浆量
1.1~3.32m3/m
单段注浆量按Q=π·R2·L·n·α·β计算
参数取值n=0.1~0.3α=0.8β=1.1
3.7注浆顺序
注浆顺序原则上先施作短孔,再施作长孔,最后施作检查孔。注浆孔顺序按由外到内,从下往上分三序孔施工。三序孔的设计原则是水平方向上采取跳孔原则(Ⅰ序孔采取跳孔,Ⅱ序孔采取间隔跳孔,Ⅲ序孔为余下孔位),垂直方向上采取隔行跳排原则。同时结合涌水水源点位置和水流方向,按由有水孔到无水孔的顺序施工,检查孔施工顺序待注浆孔注浆结束后视现场情况而定。
3.8注浆结束标准
采用定量定压相结合方式进行注浆结束标准控制,当注浆量达到设计注浆量时,而注浆压力不上升则调整浆液配比,缩短凝胶时间,并采取间歇注浆措施,控制注浆量。或注浆压力达到设计终压,且注浆量达到设计注浆量的80%以上,即可结束注浆。
3.9效果检查与补孔注浆
太佳高速公路吕梁段,全长119.55km,共有隧道18座(其中:石质隧道2座、土质隧道16座),单洞长45133m,占总里程的19.24%,宝塔山、架梁山、临县3号隧道为特长隧道,难度最大,且为全线的控制性工程。由于本项目地处山区,地形地貌地质非常复杂,建设工期又短,因此,如何安全组织管理好全线隧道工程建设显得尤为重要。
1加强培训,落实责任
加强安全宣传、教育和培训,建设符合工程实际的安全生产文化;提高安全生产认识,认真做好技术培训工作,包括光面爆破技术、湿喷混凝土施工技术、黄土隧道分部开挖法、隧道施工技术培训等。不断提高管理人员、操作人员的技术水平和安全生产知识。建管处根据有关安全生产的法律法规和规章制度,多次通过会议、文件及现场督导等多种方式,促使各施工、监理单位建立健全了安全管理组织机构和安全生产保障体系,落实各项安全生产措施,做好了隧道塌方、涌水、瓦斯、交通事故等各类事故应急救援预案,配备应急救援人员、器材、设备,应急救援预案按规定报监理单位批准并报建设单位核实,并进行了多次预演;各施工单位组织管理人员和作业人员进行了隧道开挖、喷锚支护、二次衬砌施工的岗前技术、安全培训,建管处组织进行考试,考试合格后方可上岗;特种作业人员必须持证上岗。同时。将地质超前预报、洞内通风、钻爆设计和爆破器材的管理、围岩变形监控量测及初期支护、二次衬砌、防水堵漏、临电管理等工作作为主要控制点,通过巡检、专检、旁站、指令、专题会议等手段进行监控;对预防坍塌、漏水、突泥、瓦斯爆炸事故措施的落实以及应急预案的审查和演练情况进行监控。
2强化组织,规范现场
严格施工现场安全管理,强化安全管理隧道施工组织设计,把安全生产、危险源识别、评价与控制、应急救援预案等作为主要内容。对穿越断层破碎带、软岩变形、膨胀土、富水黄土等不良地质地段编制专项施工方案。由项目经理、技术负责人和安全负责人共同组织编制,经监理部审核、建管处审查以及专家评审论证后实施,并由施工员、专职安全员进行现场监督。严格按照安全生产的相关法律法规、规章制度和现行隧道施工技术规范,对隧道的开挖、锚杆施工、钢筋网加工及安装、钢支撑的加工及安装、喷射混凝土、仰拱全幅施工、二次衬砌、隧道防排水以及隧道辅助措施等各分项工程进行了逐级交底工作。施工中,严格工序管理,规范作业流程,加强对进入隧道人员的管理,建立出入隧道登记制度。严格按照相关法律法规和规章制度对火工品进行管理,火工品专库存放专人管理,雷管、炸药、导爆索分库存放,严格执行火工品的出入库登记和使用登记制度。对纳入合同的安全生产费用,必须保证足额投入,绝不允许挪作他用。
3超前预报,实时监测
对隧道施工中可能出现的不良地质现象,结合隧道工程地质条件和指导性施工组织设计编制超前地质预报方案,明确隧道超前地质预报的方法、预报的内容、预报频次、实施计划,配备符合信息判断、数据采集与处理、预报成果报告编制等技术要求的先进仪器和能够胜任超前地质预报工作的技术人员。同时,将超前地质预报工作纳入工序管理,严格按超前地质预报方案实施。超前地质预报显示地质条件异常时,应及时采取措施,防止事故发生。
在上述前提下,将监控量测纳入施工工序,制定详细的监控量测方案。配备监控量测专业人员,并根据地质情况及时进行调整;建立最大日变形量和累计变形量的风险预警机制;严格按照规范要求布点量测,确保监控量测数据真实、准确、完整,及时对量测数据进行分析,根据分析结果调整支护参数。并及时反馈量测数据和分析结果,设计验证后及时根据量测数据调整设计参数,随时调整开挖轮廓、支护参数,根据量测数据指导施工生产。
4严细程序,稳妥进洞
隧道进洞前,由建管处组织设计单位、技术专家组、监理单位和施工单位的相关人员参加,详细调查洞口地质、地形特点,对洞口段100m范围内每2m实测横断面,对洞顶冲沟发育情况进行掌握,并查看地质资料,做到心中有数。同时,结合隧道洞口的实际情况。每一个隧道洞口均进行了大管棚超前支护,短进尺、强支护、预留核心土、三台阶开挖支护的进洞方案。进洞施工专人负责监控量测,逐榀开挖,及时支护,进洞15m后仰拱封闭成环,并且在进洞前衬砌台车进场,对洞口段尽快施工衬砌,确保了安全进洞。
5严格工序,均衡推进
目前隧道衬砌渗漏水问题,尤其是施工缝处、隧道的接口处及管节之间的连接处等薄弱环节的渗、漏水更为严重。如何搞好隧道防排水设计及裂缝防水技术,是保证行车安全和隧道能否长期使用的重要条件。
一、进洞前防排水处理
首先,在隧道进洞前应对隧道轴线范围内的地表水进行了解,分析地表水的补给方式、来源情况,做好地表防排水工作:用分层夯实的粘土回填勘探用的坑洼、探坑;对通过隧道洞顶且底部岩层裂缝较多的沟谷,建议用浆砌片石铺砌沟底,必要时用水泥砂浆抹面;开沟疏导隧道附近封闭的积水洼地,不得积水;在地表有泉眼的地方,涌水处埋设导管进行泉水引排;在隧道洞口上方按设计要求做好天沟,并用浆砌片石砌筑,将地表水排到隧道穿过的地表外侧,防止地表水的下渗和对洞口仰坡冲刷,并与路基边沟顺接成排水系统;洞顶开挖的仰坡、边坡坡面可用喷射混凝土将其封闭,并对洞口上方及两侧挂网喷浆;若在洞顶设置高压水池时,应做好防渗防溢设施,且水池宜设在远离隧道轴线处等。
二、开挖过程中对涌水地段的防排水处理
(一)涌水地段的防排水处理原则。在隧道施工过程中,应对开挖面出现的涌水进行调查分析,找准原因,采取“以排为主,防、排、截、堵相结合”的综合治理原则,因地制宜地制定治理方案,达到排水通畅、防水可靠、经济合理和不留后患的目的。
(二)涌水地段的原因分析。造成隧道涌水现象一般是由于地下水发育,洞壁局部有水流涌出;碰到断层地带,岩石破碎,裂隙发育,出现涌水现象;洞顶覆盖层较薄,岩石裂隙发育,开挖地表水下渗等原因。施工中应对洞内的出水部位、水量大小、涌水情况、变化规律、补给来源及水质成分等做好观测和记录,并不断改善防排水措施。
(三)涌水地段的处理方法。对于洞内涌水或地下水位较高的地段,可采用超前钻孔排水、辅助坑道排水、超前小导管预注浆堵水、超前围岩预注浆堵水、井点降水及深井降水等辅助施工方法。当涌水较集中时,喷锚前可用打孔或开缝的摩擦锚杆进行排水;当涌水面积较大时,喷锚前可在围岩表面设置树枝状软式透水管,对涌水进行引排,然后再喷射混凝土;当涌水严重时,可在围岩表面设置汇水孔,边排水边喷射。
三、二次衬砌中防排水处理与控制
(一)防水层安装与控制
1.防水层进场时检查。除按必要的工作程序进行取样检查外,还应检查防水板表面是否存在变色、皱纹(厚薄不均)、斑点、撕裂、刀痕、小孔等缺陷,存在质量缺陷时,应及时处理。
2.防水层铺设前对初期支护的检查和处理。防水层铺挂前,应先对初期支护喷射混凝土进行量测,对欠挖部位加以凿除,对喷射混凝土表面凹凸显著部位应分层喷射找平。外露的锚杆头及钢筋网应头齐根切除,并用水泥砂浆抹平,使混凝土表面平顺。
3.防水层铺设好后检查和处理。防水层铺挂结束,监理工程师应对其焊接质量和防水层铺设质量进行检查。其检查方法有:(1)用手托起防水板,看其是否能与喷射混凝土密贴。(2)看防水板表面是否有被划破、扯破、扎破等破损现象。(3)看焊接或粘结宽度(焊接时,搭接宽度为10cm,两侧焊缝宽度应不小于2.5cm;粘结时,搭接宽度为10cm,粘结宽度不小于5cm)是否符合要求,且有无漏焊、假焊、烤焦等现象。(4)拱部及拱墙壁露的锚固点(钉子)是否有塑料片覆盖。(5)每铺设20延长米~30延长米,剪开焊缝2处~3处,每处0.5m。看是否有假焊、漏焊现象。(6)进行压水(气)试验,看其有无漏水(气)现象等,检查防水板铺挂质量。如果发现存在问题,除应详细记录外,并立即通知施工单位进行修补,不合格者应坚决要求返工。
(二)止水带安装与控制
防水混凝土施工缝是衬砌防水混凝土间隙灌注施工造成的,对于施工缝的防排水处理,在复合式衬砌中,一般采用塑料止水带或橡胶止水带。
1.二次衬砌端部的检查与处理。在浇筑二次衬砌混凝土前,可用钢丝刷将上层混凝土刷毛,或在衬砌混凝土浇筑完后4h-12h内,用高压水将混凝土表面冲洗干净,并检查止水带接头是否完好,止水带在混凝土浇筑过程中是否刺破,止水带是否发生偏移,如发现有割伤、破裂、接头松动及偏移现象,应及时修补和处理,以保证止水带防水功能。
2.止水带安装质量的检查与处理。检查是否有固定止水带和防止偏移的辅助设施、止水带接头宽度是否符合要求、止水带是否割伤破裂、止水带是否有卡环固定并伸入两端混凝土内等项目,做好详细检查记录,如存在问题时,应立即通知施工单位进行修补,不合格者应坚决要求返工。
(三)混凝土浇筑与控制
衬砌混凝土施工时,应督促施工单位加强商品砼的后仓管理,定期不定期的进行检查。混凝土振捣时必须专人负责,避免出现欠振、漏振、过振等现象。加强施工缝、变形缝等薄弱环节的混凝土振捣,排除止水带底部气泡和空隙,使止水带和混凝土紧密结合。
四、二次衬砌渗漏处理与控制
(一)引流堵漏。对于滴水及裂纹渗漏处,可采用凿槽引流堵漏施工方法。如在渗漏部位顺裂缝走向将衬砌混凝土凿出一定宽度和深度(如宽20mm,深30mm)的沟槽,埋设直径略大于沟槽宽度或与沟槽宽度相当的半圆胶管将水引入边墙排水沟内,再用无纺布覆盖半圆胶管或防水堵漏剂封堵,然后用颜色相当的防水混凝土封堵或抹面。
(二)注浆堵漏。对于渗漏严重部位,可采用注浆堵漏施工方法。如在渗漏部位凿出一定宽度和深度(如直径80mm,深40mm)的凹坑,清理混凝土渣,并检查表面混凝土密实性,从渗漏部位向衬砌钻孔,其深度建议控制在衬砌厚度范围内,埋管注浆,其注浆浆液通过设计确定。注浆结束后,其凹坑可按文中上述4.1方法做防水堵漏处理。
五、结语
每道工序的施工质量都对隧道防排水效果产生很大的影响,施工中的每一点疏忽都可能造成渗漏水隐患。因此,应加强对每道工序的施工质量控制,严格按规范施工确保施工达到设计效果,使隧道防排水工程质量有保证。
对于隧道的设计施工,将新奥法原理理论作为参考依据,在设计过程中,把隧道周边岩体渗水经过衬砌之后的倒水设备,进一步往集水沟引入,继尔往隧道排除。如果存在某些排水设备系统不能够正常运行,将水往隧道排出,便会基于衬砌后期形成难以解决的集水现象。在此位置的水充满空隙的状况下,衬砌会受到和地下水位高度相同静水的压力,而并不是基于设计当中的无水压,也不是折减水压。同时,在渗流的动水压力的影响下,衬砌承受的压力会在在很大程度上高于此前设计标准,进而造成衬砌涌水开裂的破损情况。因为隧道铺地基面长期浸泡在积水当中,到列车动力的催动之下,便会引发底部吊空现象,列车经过时产生呼吸作用把碎石排空,也把砂子排空,知识行车产生限速,并且会引发断轨等诸多情况。在排水系统不够顺畅的情况下,便会进一步造成雨季积水等不良状况。
1.2防水设施劣质
在隧道和外部水环境之间,防水层是极其重要的部件,能够在隧道与外部水环境分隔中发挥重要作用。基于隧道工程当中,具备两种防水层:其一是柔性防水层;其二为刚性防水层。对于柔性防水层来说,其效果与材质及施工质量存在很大的联系。若防水材料劣质,没有足够的耐久性,便非常容易在运营一段时间后,将防水能力丧失。对于刚性防水层,由于它的功能和混凝土的性能之间具备一定的联系性,如果防水混凝土的衬砌施工质量比较差,在收缩大的作用下便会呈现孔隙及裂缝等一系列情况,进而使得防水层的防水能力大大降低。
2隧道工程影响作用分析
2.1案例分析
隧道工程在建设过程中,也会对水环境构成极大的影响。隧道工程将地下水渗流原有拥有的平衡破坏,在长期疏干的作用之下,使渗流场产生了极大的变化,进而对地下水正常循环造成了非常大的影响,最后恶化了自然生态环境。以某隧道工程作为案例,该隧道工程全长为15.365千米,洞顶埋深为100米~910米,洞中部属于斑古坳地区,地表面植被非常茂密,年平均气温维持在20摄氏度,年均降雨量为1500mm。此隧道的主要问题是渗漏水现象严重,通过多次整治之后,问题仍旧没有得到有效解决。在长期排水的作用下,致使地下水位呈现下降的现象,井水干涸,并且正常的农业灌溉也受到了非常大的影响。另外,因为地面沉降致使房屋产生变形及开裂情况,使当地农业及生活均无法正常开展,该地区居民只能外迁,从而损失了很大一笔经济费用。对于此隧道工程,对地下水环境的主要影响包括两方面的内容:一方面为疏干地下水;另一方面为渗流场变化使岩土应力发生变化。
2.2疏干地下水
造成自然环境灾害最主要的原因为隧道长期排水。隧道挖掘之后,把水循环系统破坏,例如知识地下水资源被很大程度的流失。在隧道积水与汇水的作用下,使形成地下水运动的方向发生较为的改变。在长期排水的情况下,位于隧道中的地下水系统渐渐将地下水排出。将有关理论当作参考标准,地下水的补给量不能让其排水量得到充分满足,于是其水位便会发生持续下降的现象。在地下水位慢慢减弱的状况下,地下水和地表水径流间都会产生一定程度的变化,以直接的方式导致岩溶泉发生出水量极少的情况。与此同时,也可能造成地表的取水井水位下降及水井干涸等现象,进一步知识居民生活用水尤为匮乏。另外,地下水位下降会知识原农田土壤的含水量大大减退,尤其对水稻区域的影响更为严峻,可能引发无法继续种植的情况,最终对农业的正常运作产生了非常大的影响。
2.3渗流场变化使岩土应力发生变化
首先,由于隧道让许多地下水疏干,进一步让水位产生下降情况,而饱和岩土层当中空隙的水压力则会呈现减弱的趋势,不饱和区域负水压力区变大,在总应力不发生变化的状况之下,有效的应力便会得到进一步的上升。其次,应渗流场发生明显改变,地下水渗流的方向也会随着发生改变,变成在新水力梯度的状况下,便可能朝着隧道中心发生流动,此时方向为向下方向。另外,应渗流方向发生明显变化,地下水的渗流力也会随之发生变化,从而让竖直向下应力加大,最终导致总应力提升。在此状况下,岩土便会产生新的沉降,直至达到新的动态平衡状态为止。土体沉陷则会让隧址区的房屋产生倾斜现象,也会产生开裂现象,进而导致不能继续应用,在土体沉陷对农田造成严重影响的状况之下,便在很大程度上增加了农业耕种的难度。
2高速公路瓦斯隧道施工技术措施
2.1选择科学合理的施工方案
针对特定的隧道地质及施工情况选择科学合理的施工方法,是对施工单位的综合能力的有效验证,也是隧道安全施工的强有力保障。实践已经证明,绝大多数的隧道塌方都与隧道施工方案制定的不合理有关。比如,当隧道围岩发生变化时,为了不影响施工进度或者节约施工成本,一些现场技术管理人员可能不会及时改变施工方案,而是抱着侥幸心理继续工作,从而造成隧道塌方,严重时甚至会给作业人员带来人身危险。其次,即使一些技术方案制定的很好,在实施过程中也有失败的可能,这主要是因为工程对施工工艺的控制不严。比如,在隧道施工中,超前支护不符合设计规范时,可能会导致掌子面的围岩坍塌和一次衬砌的塌落。这些确实可以归结为质量问题,但细究其根源,还是由于施工时对工艺控制不严。因此,在施工中选择科学合理的施工方案,同时注重工艺控制,才能保证施工的安全.
2.2实施地质预报,预防隧道塌方
隧道地质勘探工作贯穿于隧道的整个施工过程之中,地质状况的好坏会对隧道施工产生很大的影响,对于不良的地质状况尤其需要关注。隧道塌方会影响施工进度、耽误施工进程,甚至形成灾难性事故,导致人员伤亡、影响经济效益。因此应将地质预报工作纳入隧道施工技术管理中来,为隧道施工安全提供有力的制度保证。由于隧道地质具有相当的复杂性,地质预报工作在预测的准确性上尚待提高。但是,随着地质预测预报技术的发展,对隧道的地质状况进行探测的方法越来越多。综合考虑工程设计提供的地质资料以及施工过程中对隧道围岩的观察分析,相关人员可以优化组合预报手段,从而使对地质状况的预测与围岩的实际状况尽量符合。这对于制定合理的施工方案、有效预防及控制隧道塌方、保证隧道施工的安全有很大的作用。
二、公路隧道支护技术
公路隧道初期支护方式要根据施工要求采取不同的支护形式。主要选择的有喷射混凝土、锚杆、钢筋网和钢架等支护形式。
(1)喷射混凝土:其方法大致分为素喷和网喷两种,喷射混凝土的作用是对围岩节理、裂隙起到充填作用,将不连续的岩层层面胶结起来,形成一个整体。同时产生楔效应增加岩块间的磨擦系数,进而有效防止岩块沿软弱面滑移脱落,使表面岩块保持稳定状态。喷射混凝土由于具有一定粘结力和抗剪强度,能与岩层粘贴的同时和围岩形成了统一的承载体系,极大改善了喷层的受力条件。喷射混凝土一定要及时并做到分层施喷,喷层虽薄但其具有较高的强度。这样,喷层有效控制了围岩变形。即使在围岩仍有较大变形的情形下,仍不致于产生坍塌,这样就有效提高了围岩自承能力。同时喷射混凝土能使隧道周边的围岩尽早封闭,进而有效防止了围岩的进一步风化。在喷射混凝土作业施工中,首先要做好职工准备,准备充足的材料如水泥、砂、石、速凝剂、水等,严格检验材料质量,尽量用新鲜的相容性试验合格的水泥和速凝剂,砂、石含水率要达标。检修好喷射机、混凝土搅拌机等设备,并进行就位前的试运转。风管和水管管路及接头要确保良好。检查开挖断面,将附着于岩面的泥圬冲冼干净。对渗漏较大处做好引排水处理。在做好充足的准备工作后进行操作,操作中要注意:控制好风压、水压和水灰比。要想保证喷射混凝土的质量,降低回弹率,减少挥发粉尘,喷射作业时要求风压控制要稳定,压力大小应调整适当。水压通常要比水压50-100Kpa,要在喷头水环位置形成水雾,充分湿润干拌合料。干喷时,如果喷射的混凝土易粘着,回弹小而且表面湿润光泽,说明水量适中。如发现表面无光、回弹物多、灰尘大、混凝土不密实等现象,则说明水量小。如果表面出现流淌滑动现象,则说明水量大。要掌握好喷射角度和喷射距离。喷嘴与岩面的角度一般要垂直于岩面。如果靠近边墙,应将喷嘴略向下俯约10°左右,使混凝土喷射在较厚的混凝土顶端。喷嘴与岩面的距离一般保持在0.8-1.2m。每一次喷射混凝土的厚度,应掌握在拱部为5-6cm,边墙为7-10cm。喷射的顺序应先墙后拱从下而上,先喷凹处找平,然后继续向上喷射。喷射时料束要尽量呈旋转轨迹运动,大致要一圈压半圈,纵向按蛇形进行。为保持喷层表面平整,喷射完应对表面再扫射一层。喷射顺序应自上向下,料束要呈横扫方式运动,不能旋转或者停留。
在黄土隧道施工过程中,会出现沿着隧道走向在隧道两侧出现地表裂缝,且裂缝会随着隧道开挖进度相应发展,一般情况下裂缝是由拱脚处以黄土内摩擦角度沿仰坡延伸至上方地表,随着施工进度,山体裂缝最终连在一起。
1.2塌陷
由于施工过程中的冒顶、拱顶下沉等原因,往往会引起局部的地表连续性下沉,慢慢发展成为地表塌陷,当地表塌陷变形较大时,还会伴随着产生一系列的环状裂缝。
1.3陷穴、落水洞
其主要成因是隧道施工过程中的地表裂缝以及冒顶、拱顶作用形成的上部土体塌空,致使隧道顶部的降雨或者是其他农业灌溉用水下渗,最终在地表产生陷穴和落水洞。
2湿陷性黄土隧道的基底处理原则
从湿陷性黄土隧道的工程特性以及以往的湿陷性黄土地区地基处理经验来看,湿陷性黄土隧道基底处理应遵循“内外加固、先保护后加固”的原则。由于水是造成黄土湿陷性变形的最主要因素,所以在设计湿陷性黄土隧道地基处理方案时,应首先要考虑水对湿陷性黄土以及整个隧道工程的影响,做好湿陷性黄土隧道工程的排水与防水工作。对于黄土隧道工程来说,进行基底处理的目的无非就是改善黄土的工程特性,减少其土壤的渗透性,控制湿陷作用的发生。所以往往通过换土或者加密等手段进行湿陷性黄土隧道工程基底加固处理,使处理后的基底不具有湿陷性或者消除部分湿陷,使其数值不超过规定范围。
3湿陷性黄土隧道工程的基底处理方法
对于湿陷性黄土地基处理而言,目前国内已有较为成熟的技术方法和隧道工程实践经验,其主要的处理方法有:碾压、强夯、换填、动力挤密桩、高压灌浆、高压旋喷桩等,其中常用的基底处理方法有以下两种:
(1)水泥挤密桩。这是湿陷性黄土隧道工程中较为常用的一种基底处理方法,由于湿陷性黄土本身具有大孔隙性和湿陷性,水泥挤密桩就是通过对其大孔隙进行夯实挤密,从而消除湿陷性并对基底产生加固作用。在桩锤的夯实过程中,桩孔中原有土被强制性的侧向挤出,桩周范围内的土质被压缩和重塑。但是由于湿陷性黄土隧道工程隧道内施工作业面相对较小,振动作用对围岩产生的影响等,需要湿陷性黄土隧道从工程中的挤密桩装身材料以及挤密桩施工机械和桩间距等做出优化处理。
(2)树根桩。所谓的树根桩,其实是一种小型钻孔灌注桩,是通过利用钻机钻孔到一定的深度,随后放入钢筋笼、碎石和注浆管,再通过压力灌注水泥或砂浆的方式制成的钢筋混凝土桩。由于其布桩方式多采用垂直、倾斜设置或者树根桩布置,被成为树根桩。凭借着其高承载力、沉降量与扰动范围小、施工操作方便和经济快捷等特点,在湿陷性黄土隧道工程基底处理中得到了初步的应用,能在有效的空间内最大限度上的减少开挖过程中对隧道洞身地层的扰动。
4黄土隧道基底处理的新技术
就黄土湿陷性的内外部成因来讲,其主要内因是由于黄土自身的土质和结构组成,外因主要是由于水的侵蚀作用的外部载荷。由于黄土本身是在干旱和半干旱气候条件下形成的,其土质本身有欠压密性,加上其和盐类胶结材料的易溶性,致使黄土具有湿陷性。所以对于湿陷性黄土地基的处理应本着力消除其内应,处理方法有以下几类:
(1)土体加密法。主要指通过各种工程施工措施,加大黄土的密实度,通常可以采用强夯法和素土垫层法。
用盾构法修建隧道已有150余年的历史。最早进行研究的是法国工程师M.I.布律内尔,他由观察船蛆在船的木头中钻洞,并从体内排出一种粘液加固洞穴的现象得到启发,在1818年开始研究盾构法施工,并于1825年在英国伦敦泰晤士河下,用一个矩形盾构建造世界上第一条水底隧道(宽11.4米、高6.8米)。在修建过程中遇到很大的困难,两次被河水淹没,直至1835年,使用了改良后的盾构,才于1843年完工。其后P.W.巴洛于1865年在泰晤士河底,用一个直径2.2米的圆形盾构建造隧道。1847年在英国伦敦地下铁道城南线施工中,英国人J.H.格雷特黑德第一次在粘土层和含水砂层中采用气压盾构法施工,并第一次在衬砌背后压浆来填补盾尾和衬砌之间的空隙,创造了比较完整的气压盾构法施工工艺,为现代化盾构法施工奠定了基础,促进了盾构法施工的发展。20世纪30~40年代,仅美国纽约就采用气压盾构法成功地建造了19条水底的道路隧道、地下铁道隧道、煤气管道和给水排水管道等。从1897~1980年,在世界范围内用盾构法修建的水底道路隧道已有21条。德、日、法、苏等国把盾构法广泛使用于地下铁道和各种大型地下管道的施工。1969年起,在英、日和西欧各国开始发展一种微型盾构施工法,盾构直径最小的只有1米左右,适用于城市给水排水管道、煤气管道、电力和通信电缆等管道的施工。
中国于第一个五年计划期间,首先在辽宁阜新煤矿,用直径2.6米的手掘式盾构进行了疏水巷道的施工。中国自行设计、制造的盾构,直径最大为11.26米,最小为3.0米。正在修建的第二条黄浦江水底道路隧道,水下段和部分岸边深埋段也采用盾构法施工,盾构的千斤顶总推力为108兆牛,采用水力机械开挖掘进。在上海地区用盾构法修建的隧道,除水底道路隧道外,还有地铁区间隧道、通向河海的排水隧洞和取水管道、街坊的地下通道等。
盾构法的优越性
盾构法施工得到广泛使用,因其具有明显的优越性:
①在盾构的掩护下进行开挖和衬砌作业,有足够的施工安全性;
②地下施工不影响地面交通,在河底下施工不影响河道通航;
③施工操作不受气候条件的影响;
④产生的振动、噪声等环境危害较小;
⑤对地面建筑物及地下管线的影响较小。
盾构法施工准备工作
采用盾构法施工时,首先要在隧道的始端和终端开挖基坑或建造竖井,用作盾构及其设备的拼装井(室)和拆卸井(室),特别长的隧道,还应设置中间检修工作井(室)。拼装和拆卸用的工作井,其建筑尺寸应根据盾构装拆的施工要求来确定。拼装井的井壁上设有盾构出洞口,井内设有盾构基座和盾构推进的后座。井的宽度一般应比盾构直径大1.6~2.0米,以满足铆、焊等操作的要求。当采用整体吊装的小盾构时,则井宽可酌量减小。井的长度,除了满足盾构内安装设备的要求外,还要考虑盾构推进出洞时,拆除洞门封板和在盾构后面设置后座,以及垂直运输所需的空间。中、小型盾构的拼装井长度,还要照顾设备车架转换的方便。盾构在拼装井内拼装就绪,经运转调试后,就可拆除出洞口封板,盾构推出工作井后即开始隧道掘进施工。盾构拆卸井设有盾构进口,井的大小要便于盾构的起吊和拆卸。
盾构法施工工序
主要有土层开挖、盾构推进操纵与纠偏、衬砌拼装、衬砌背后压注等。这些工序均应及时而迅速地进行,决不能长时间停顿,以免增加地层的扰动和对地面、地下构筑物的影响。
土层开挖
在盾构开挖土层的过程中,为了安全并减少对地层的扰动,一般先将盾构前面的切口贯入土体,然后在切口内进行土层开挖,开挖方式有:
①敞开式开挖。适用于地质条件较好、掘进时能保持开挖面稳定的地层。由顶部开始逐层向下开挖,可按每环衬砌的宽度分数次完成。
②机械切削式开挖。用装有全断面切削大刀盘的机械化盾构开挖土层。大刀盘可分为刀架间无封板的和有封板的两种,分别在土质较好的和较差的条件下使用。在含水不稳定的地层中,可采用泥水加压盾构和土压平衡式盾构进行开挖。
③挤压式开挖。使用挤压式盾构的开挖方式,又有全挤压和局部挤压之分。前者由于掘进时不出土或部分出土,对地层有较大的扰动,使地表隆起变形,因此隧道位置应尽量避开地下管线和地面建筑物。此种盾构不适用于城市道路和街坊下的施工,仅能用于江河、湖底或郊外空旷地区。用局部挤压方式施工时,要根据地表变形情况,严格控制出土量,务使地层的扰动和地表的变形减少到最低限度。
④网格式开挖。使用网格式盾构开挖时,要掌握网格的开孔面积。格子过大会丧失支撑作用,过小会产生对地层的挤压扰动等不利影响。在饱和含水的软塑土层中,这种掘进方式具有出土效率高、劳动强度低、安全性好等优点。
推进操纵与纠偏
推进过程中,主要采取编组调整千斤顶的推力、调整开挖面压力以及控制盾构推进的纵坡等方法,来操纵盾构位置和顶进方向。一般按照测量结果提供的偏离设计轴线的高程和平面位置值,确定下一次推进时须有若干千斤顶开动及推力的大小,用以纠正方向。此外,调整的方法也随盾构开挖方式有所不同:如敞开式盾构,可用超挖或欠挖来调整;机械切削开挖,可用超挖刀进行局部超挖来纠正;挤压式开挖,可用改变进土孔位置和开孔率来调整。
衬砌拼装
常用液压传动的拼装机进行衬砌(管片或砌块)拼装。拼装方法根据结构受力要求,可分为通缝拼装和错缝拼装。通缝拼装是使管片的纵缝环环对齐,拼装较为方便,容易定位,衬砌圆环的施工应力较小,但其缺点是环面不平整的误差容易积累。错缝拼装是使相邻衬砌圆环的纵缝错开管片长度的1/2~1/3.错缝拼装的衬砌整体性好,但当环面不平整时,容易引起较大的施工应力。衬砌拼装方法按拼装顺序,又可分为先环后纵和先纵后环两种。先环后纵法是先将管片(或砌块)拼成圆环,然后用盾构千斤顶将衬砌圆环纵向顶紧。先纵后环法是将管片逐块先与上一环管片拼接好,最后封顶成环。这种拼装顺序,可轮流缩回和伸出千斤顶活塞杆以防止盾构后退,减少开挖面土体的走动。而先环后纵的拼装顺序,在拼装时须使千斤顶活塞杆全部缩回,极易产生盾构后退,故不宜采用。