绪论:写作既是个人情感的抒发,也是对学术真理的探索,欢迎阅读由发表云整理的11篇组装工艺论文范文,希望它们能为您的写作提供参考和启发。
中图分类号:TU391 文献标识码:A 文章编号:
1引言
结构钢建筑具有自重轻、施工速度快、强度高、抗震性好、环保等多项优点,是目前国内重点推广的项目之一。在利用钢结构建筑进行高层建筑建设过程中,合理确定钢结构建筑的安装施工顺序、尽量采取合理的安装措施来控制安装质量是保证整个建筑施工质量的关键。下面笔者就先结合建筑钢结构自身特点开始本次论文的分析。
2建筑钢结构的特点
2.1钢结构材质均匀
从机械功能的角度来看,刚才自身材质符合力学假定条件。同时因为钢材内部结构近乎同向,因此在受外界环境作用时,其所受波动范围相对较小,只要其所承受的应力在其可承受能力范围内都具备很好的弹性。另外其实际受力状态和利用工程力学计算出的结果是相近的,更容易进行选材。因为说钢材的材质相较于其他材料更好。
2.2钢材的塑性和韧性相对较好
钢材的塑性和韧性都不错,一般的压力环境不会引起钢材的断裂或损伤,因此选择钢材作为建筑材料即使遇到超载情况,钢材也能够及时分配建筑内部各部分作用力,从而达到建筑各部分应变力的平衡,而不会引起建筑自身的损害。另外因为钢材自身适应载荷能力强,因此即使遇到强震,钢材也能够保持很好的整体性,不会致使建筑物坍塌。实践经验证明,钢材作为建筑材料具备其他材质建筑材料所没有的抗震能力。
2.3钢材自重轻且强度高
众所周知,钢材具有很高的强度,且和一般的建筑材料钢筋混凝土结构相比,钢结构建筑的竖向构件截面积更小,这样就大大增加了建筑的可使用面积。且钢材料自身自重相对较轻,在同样高度的建筑物中,同样高度的钢结构的重量仅有钢筋混凝土的一半。此时建筑内部的设计内力相对较小,所以即使遇到地震等外力,建筑物也具备较高的抗震稳定性。且钢结构材料的施工造价成本大大低于钢筋混凝土材料。
3建筑钢结构安装过程中的关键技术
3.1普通单层钢的结构安装技术
安装普通单层钢时应注意以下几个方面:(1)要遵循规定的构件吊装顺序。吊装平面构件时需考虑到该类构件主要是为了形成建筑空间结构体系的稳定性;在实际施工过程中应先吊装竖向构件其次才考虑平面构件。而在吊装竖向构件时,首先应吊装柱,其次才是吊车梁,再者是制动桁架最后才是托架;(2)标准样本间的安装。安装时柱和柱之间已形成排架,因此实际施工中最好选择柱间间隙较大的钢柱。施工中必须将安装系统误差降至最低,且不能超出规定的误差范围,通常只要制作孔位合适,不仅安装效率高且安装误差也会相对较小。
3.2多高层建筑结构的安装
多高层建筑结构的安装需注意以下几个方面:(1)总平面体系规划设计。该种规划设计必须全面考虑到建筑施工中起重机的布置、排水系统的布置、纵横轴线尺寸的选择;机械开行路线等多个因素。因为这些因素都决定着高层建筑的最终结构体系;(2)钢框架吊装的基本顺序。建筑工程中的钢构件多为竖向结构钢柱体,一般施工条件下一节2—4层即可。另外在实际施工中还需考虑到吊塔爬升过程中工程对吊塔框架稳定性及吊装进度的要求。若是进行流水段施工作业划分,还需先组成标准的框架体系结构然后再进行流水作业段的划分。
4建筑钢结构安装过程中需要注意的质量控制要点
4.1钢结构件制造过程中重点工序的控制
建筑钢结构制作过程中需要进行一下几项重点工序控制:(1)钢结构的组装工艺。钢结构的组装工艺需考虑每个组装零件的尺寸精度,另外钢结构的组装工艺对工装精度的要求相对较高,因此在组装时需看准图纸,编制最合理、切实实际的组装工艺同时在组装过程中经常对工装精度进行检查;(2)钢结构的焊接技术。进行钢结构焊接时,要确实施工焊接在焊接前能够制定一套完善的焊接工艺指导书来对施工中的焊材、焊剂和配套气体进行严格选材。同时焊接易变形构件时可以通过严格控制温度的方法来进行焊接矫正。施工中若用到焊条、焊剂和粉芯焊丝,需在使用前严格按照说明书或相关工艺文件进行烘干。若施工中某钢种首次接受焊接,需进行焊接工艺评定同时制定对应的焊接工艺。为了减少焊接过程中焊接对焊材造成的压力,需对钢材需要焊接的部位进行预热处理,同时在焊接过程中确保焊材能够随时进行加热处理,从而保证实际操作中能够一次性焊接一条焊缝。焊接完成后,还需依据相关标准对焊材进行后热处理。
4.2建筑钢结构紧固件连接的质量控制
建筑钢结构紧固件连接的质量控制可以从以下几个方面进行考虑:(1)首先连接件本身的质量要符合国家标准,为了确保连接件的质量,需在实际安装之前对连接件进行高强性的螺栓摩擦面的抗滑移系数实验,在此基础上对螺栓的出场证明、螺栓批号等进行仔细检查,符合要求才可使用;(2)利用刚强性螺栓连接钢结构体时需确保摩擦面的加工质量,尽量减少摩擦面的污染和锈蚀,只有这样才能够保证摩擦面的抗滑移系数;(3)安装高强性螺栓时必须是自由穿入,不能通过敲打和扩张的方式进行螺栓固定。
5结语
钢结构施工在我国仍然处于起步阶段,但是随着经济的发展以及城市化进程的加快,钢构件建筑材料的性能优势必将显现出来,而其在高层建筑中的应用范围也会越来越广泛。在利用钢结构进行建筑施工时,我们应当加强施工控制管理,做好施工的进度管理和质量管理。同时及时总结钢结构建筑施工中钢结构材料应用的关键技术同时对如何保证建筑钢结构的质量进行深层分析,只有这样才能够确保钢结构工作的施工质量,保证建筑施工最终质量。
参考文献:
中图分类号: U468.23 文献标识码: A 文章编号: 1673-1069(2016)36-177-2
0 引言
近几年随着我国人均GDP的增高,人们对汽车的需求量逐渐增加,其消费市场也越来越大,从而导致内部市场的竞争也越来越激烈。为进一步提升汽车企业在汽车生产制造行业当中的竞争力,作为企业生产制造方,必须从企业内部的设计和生产过程中不断地进行改革和完善,如此一来才能够从根本上优化企业的市场竞争力,为企业的可持续发展奠定基础。汽车总装线是汽车生产工艺流程的最后一个环节,也是保证汽车质量的最关键环节。在该工艺环节内通过各项技术工艺和管理措施,实现系统的流水线式组装作业,完成汽车生产的总装。
因此,在该工艺环节内设计步骤和组装方法的合理性和高效性是保障汽车生产的关键因素,也是控制汽车质量的必须手段。
1 汽车总装线参数确定设计及方法
汽车总装线参数确定主要是在整个汽车总装线的工作流程中对其总装目标的外形和特点等进行全面的分析,从而构建“两个确定”。
第一,确定总装汽车的三维空间。根据汽车总装线的目标物从其结构上对汽车的长度、宽度、高度三方面对其三维空间结构进行确定,从而对汽车的实际生产型号的标准进行确定。汽车总装线汽车总装三维空间参数的确定能够为汽车总装线的控制和管理提供准确的空间数据信息,使其步骤设计更加精确。
第二,确定总装汽车各个部分的重量。该参数的确定主要是根据目标汽车的生产需求对其各个环节的重量和总重实施参数确定,从而实现在汽车总装线设计工作过程中能够准确、迅速地进行移动运输,完成总装的准备工作。
汽车总装线的设计参数确定除了“两个确定”外还需要对其总装线的工艺参数和生产要素进行确定,从而更加准确地为其总装线的设计和实施实提供参数。
首先,在汽车总装线的工艺参数确定的过程中主要是根据目标汽车所使用的材料和需要进行组装的工艺部分进行处理,充分发挥总装线材料与工艺的实质性,促进汽车总装线工作质量的提升。
其次,在汽车总装线的生产要素参数确定的过程中主要是根据汽车总装线的工作人员数量,对其进行整体生产人员要素的控制。此外,在汽车总装线中对汽车的总装定额、生产节拍、工作强度、工作时间进行规划,实现生产流程参数化执行,改进总装线的工作效率。
2 汽车总装线分段的设计及方法
汽车总装线的分段生产能够有效地促进其生产效率和生产工艺的提升,从而掌握汽车生产制造的核心技术和方法。
汽车总装线分段生产的价值在于实现不同分段内不同生产工艺和组织形式生产,提升分段工作效率。汽车总装线分段生产根据不生产目标汽车的需求对其进行分段生产线处理,从而根据每一个组装的需求性对其工艺进行确定。例如,在汽车总装线工艺内的汽车底盘装配分段内根据汽车的型号和底盘的高度选择空间总装的方式,以悬挂式将汽车的前后轮胎进行装配,实现工艺技术的加强。
此外,汽车总装线的分段设计能够提高总装线的维护效率。传统的一体化总装线在其日常维护上维护内容较多,维护方式复杂,需要兼备各个总装线流程和工艺的专业人员和有经验的人员对其进行故障点进行定位,进而对其故障进行排除和维护,使用的时间较长,严重影响维护的效率。此外,如果对总装线的维护和故障处理上不具备高效性和稳定性则会降低汽车总装线工作的整体稳定性和工作效率,影响汽车的总装。
目前汽车总装线分段设计的方法主要是根据汽车的结构对其实施分段设计,其中以内饰装配、底盘装配和基本设备装配三段式为主要应用方法。在该三段式汽车总装线设计工艺中实现了分段、分结构、分工艺的汽车总装工作,有利于整个总装线的管理和维护,具有应用价值和意义。近几年随着我国生产线工艺的改进和管理方式的完善,汽车总装线分段设计融入了工程分段管理理念,按照汽车总装的先后顺序,建立了顺序分段总装线工艺,实现了结构和顺序双重分段组装工艺,为我国汽车总装线的生产质量和生产效率的提升奠定了基础。
3 汽车总装线工艺的设计及方法
汽车总装线流水线内需要不同的总装工艺,这样才能够完成总装线的根本设计。因此,汽车总装线工艺的设计需要根据汽车企业的生产计划和汽车市场的整体情况,对其进行选择。例如,大众汽车的生产战略为中端汽车消费行业,其在总装线工艺中更加强调的是总装线总体成本和效益的关系。因此,其总装线工艺设计的要点是对总装线流程的实施成本和预期收益进行规划,从而实现低成本、高效益的汽车总装线工艺。而宝马汽车企业注重的是高端市场的发展,其在总装线的设计上更加注重的是高端品质和各个部件的品质。因此,总装线的工艺必须从每一个细节处入手,完善细节和整体总装技术,其总装线的工艺流程应该更加细致化,从而实现汽车的总装。汽车总装线的运输链的速度和装配人员的熟练度是其汽车总装线日常生产总量和质量的主要影响因素。因此,在其方法改进的过程中必须强化转配人员的熟练度,提升总装线运输速度,缩短总装线时间,从而提高工作质量。
4 汽车总装线布置的设计及方法
汽车总装线布置设计的步骤主要是根据总装线的平面形式将其布置成直线型、U型、S型、矩形、螺纹型几种方式,从而实现汽车总装线的平面布置设计,为其流程的优化奠定基础。
汽车总装线布置的方法主要是根据汽车总装线的工作长度、汽车总装线的工作场地空间、汽车总装线的生产需求、汽车总装线的流畅性、汽车总装线的经济型五个方面对其实施设计。目前我国汽车总装线的工作步骤设计主要是采用旧厂房改造的方式,按照工程的格局和总装线的经济价值对其进行总装线布置设计,往往会忽略总装线的工作长度需求和生产需求。因此,在其工艺方法改进的过程中必须充分以改革总装线布置方法的需求对其进行方法改进。汽车总装线布置工艺的切入点是以汽车企业的人力资源和经济资源为基础,在满足总工艺的生产数量需求和质量需求的同时,实现工艺的优化,发挥汽车总装线的工作价值和意义。
5 总结
汽车总装线是汽车生产完成装配中的收尾环节,同样在整个汽车生产的流程中占有重要的位置。随着当前我国现代技术和管理水平的不断提升,未来在汽车总装线的设计步骤和方法上必须与时俱进,实现汽车总装工艺与现代工艺的完美结合,以汽车工艺为入手点,提高对设备、人员、财力等诸多方面的优化控制,提高生产效率,保证产品质量。从而为我国汽车生产制造行业的发展提供专业、高效的生产技术和管理技术。我们要发展自身优势,提高市场占有率。以汽车企业的发展战略目标为基础,以企业的生产目的为根本,实现企业总装线生产工艺的规划,保障各个环节工作的协调性和效率性,从而促进我国汽车批量生产质量的提升,达到我们自身发展的目标要求。
参 考 文 献
[1] 齐相龙,刘晋飞,陈明.汽车线束预装配线平衡问题的优化和仿真[J].机械设计,2015,01(01):68-72.
[2] 王元.汽车总装生产线分析[J].科技创新与应用,2016,03(05):79.
[3] 王龙飞.汽车总装线上加注制动液泄漏故障分析[J].汽车科技,2016,02(01):93-99.
[4] 董萌.浅谈汽车工厂与汽车工艺设计[J].中国高新技术企业,2014,16(07):113-115.
[5] 胥红光,姚文.采用PLC集成故障安全系统的汽车总装车间ANDON系统研究[J].微型电脑应用,2013,10(06):35-37.
一、现状分析
X公司作为电子产品制造企业,拥有着先进精湛的制造加工工艺,相对良好的生产环境,严格的管理体系,是国内名列前茅的优质企业。但在生产车间内部仍旧存在不良问题,如生产效率、线平衡率偏低、layout布局不合理、室内物流路线设计不当等问题,这些不良问题都将是提高生产成本,降低公司利润率的主要因素。本文将主要针对生产效率,线平衡率偏低的问题做案例分析。
二、案例分析
(一)生产线改善前状况分析。以下案例叙述均为X北五厂区四层车间生产现场,此生产车间的固定客户是微软,近两年来生产的产品多数为键盘,同样我工作期间所接触的生产线体主要也是生产制造键盘。本节案例中所谈到的生产线平衡是机种名称为SHAW的生产线。SHAW为2014年八月份接下的新订单,从商谈接订单,到确定制程再到投产经历了6个月的时间,由于订单量较大,经过生管部门及IE部门计算后确定了生产线数量,在进入到正式进行量产之前,需要经过试生产,称为
PRE-PV,即按照量产的形式少量生产,用以检验产品质量,下面将对SHAW机种PRE-PV阶段的生产线平衡作分析。
根据PRE-PV阶段的试生产,可以得出初步的生产线生产状况,根据实测各站工时可以总结如下:计算生产线平衡率:平衡率(L/B)=(各工序时间总和/(工站数*瓶颈工序时间))*100%=(∑ti/(工站数*CT))*100%,得出目前生产线线平衡率L/B=78%,CT=46s。可以从中观察到整条产线工时严重不均衡,出现了高峰低谷的形状,也可以说是木桶效应,以至于造成L/B偏低,产能降低,效益下降的后果。
总结目前的产线面临的主要问题是:产能偏低,线平衡较差。根据生产线的实际情况,下面来分析造成目前问题的原因。原因分析:现场主要存在的生产因素为人(man)机(machine)料(material)法(method)环(environment)五大因素,除以上五个主要因素外,还有其他例如信息、制度等因素影响着生产工时,这里我们主要从4M1E五大因素来分析影响产能和线平衡率的原因。具体如下:(1)从人(M)方面分析:可以观察到工时偏高的站别大多为人力组装站。(2)从机器(M)方面分析:山积表中同样观察到有些机台运作站别工时也存在偏高现象。(3)从原料
(M)方面分析:可以分析是否由于组装材料存在问题,影响组装工时,所以造成工时过高。(4)从组装方法(M)方面分析:是否由于组装工序及组装方法有问题。(5)从生产环境(E)方面来分析:是否是由于生产线5S环境较差,物料摆放位置不妥,因此影响员工操作,造成组装工时过高。从人、机、料、法、环五个生产要素分析问题产生原因后绘出鱼骨图,使问题的产生原因更加鲜明的呈现在眼前。
(二)改善方案。由于人员操作熟练度及动作规范度改变速度相对较慢,所以先解决运行机台、组装工序方法及工作环境产生的不利因素。如下为改善方案:针对运行机台方面,实际测量机台运行时间,计算出机台的无效运行时间,根据情况来进行机台改善,如有的机台内部零件老化,需要及时更换新的零件。针对人员操作的熟练度及动作的规范程度对工时产生的影响,需要分两步来进行改善,第一上岗前对操作人员进行操作培训,严格按照标准作业指导书作业,保证产品的组装质量,正式开始到岗位工作后,定期进行岗位培训,纠正操作问题,形成规范化产线组装。第二在操作过程中员工会受实际的操作环境影响,组装过程中按照自己的习惯或是方便来操作,并不是按照标准作业指导书作业,这种情况下需要考虑员工的操作是否会影响组装的产品质量、标准作业指导书中的规范作业是否不便于操作,重新对该站别的组装动作进行动作分析,找出不当、多余操作,再根据ECRS四大原则来进行相应改善。
(三)改善效果分析。如下为改善前后的效果对比:改善前状况:(1)人员手动组装治具压合,人力需求1人。(2)人员作业、治具压合现场5S杂乱。(3)人员需每天搬放载具一千次左右。改善后状况:(1)人员动作与前站合并,改善机器做自动压合,无需人力。(2)人员动作与前站合并,改善机器做自动压合,无需人力。改善后产能分析:改善后产线CT=40S,L/B=83%,CT时间下降6S,线平衡率提升到83%,SHAW共有10条生产线,每天工作时间为10H,改善前的单位产能UPH=3600/46*10=782pcs,一天的总产能为7820pcs,改善后的单位产能UPH=3600/40*10=900pcs,一天的总产能为9000pcs,总产能提高了1180pcs,相应的生产效率提高,工厂效益提升。
中图分类号:TE64 文献标识码:A 文章编号:1003-9082(2016)01-0264-02
一、CNG加气站的原理和流程
CNG加气站主要是指为CNG汽车充装燃料,也可为大型的CNG运输槽车充装转运的CNG燃气燃料场所。天燃气管道输送天然气到CNG加气站,燃气通过工艺设备进行脱硫、脱水等预处理,再通过压缩机压缩后储存到储气瓶中或通过加气机给出售给加气车辆。
加气站控制系统被分为压缩机控制系统、网络控制工艺流程管道系统、加气机费用管理系统、可燃气体报警控制系统,加气站实现安全运营、平稳加气功能是与四套系统互相配合工作密不可分的。天然气加气站的流程如图1所示。
图1 天然气加气站的流程图
Fig. 1.1 Flowchart of natural gas filling stations
二、国外CNG加气站技术
国外CNG加气站的技术水平和发展趋势以美国安吉公司(ANGI)、加拿大IMW 公司和意大利新比隆公司等外国厂家的CNG技术为代表。
1.加气站总体技术
加气站普遍采用撬装式结构,按照集装式和模块化设计,将压缩机、天然气净化系统、冷却系统、气体回收系统、控制系统、储气瓶组等都集成在一个类似集装箱封闭的金属箱体中,该箱体具有降噪、防雨、防爆和便于运输安装等作用。模块化结构具有可变形组装的特点,可以满足不同用户和不同地区建站的要求。
2.安全为首的设计
为了安全加气站普遍采用了防爆设计、集中排空、紧急关机、安全泄压、售气机自动关闭等措施:
3.自动化系统监控
美国 CNG加气站普遍自动化程度较高。压缩机组启动后,系统在运行过程中,包括启动、净化压缩、给气瓶组充气、停机排空、再启动,以及通过售气机按低、中、高压的顺序给汽车充气等,完全按一定的时序自动运行。管理人员通过SCADA系统对本地或各地多台加气站实现远距离实时集中控制管理,出现故障,立即报警,同时自动紧急关闭系统,进行故障诊断和排除。
4.模块式的灵活组装
生产厂家已形成自己固定的工艺流程和结构模式。同一厂家生产,同一规格排量的加气站,几乎没有完全相同的。任一台结构上都有些变异,或局部更换了某台设备,或增加了某些功能。这些都是应不同用户要求,或不同地区的需要而修改的。
5.调试后出厂,现场安装工作量小
美国普遍采用橇装结构,将加气站组装调试的大量工作都放在工厂完成,易于加强质量控制,保证加气站稳定可靠。现场施工量很小,只要接通电源和气源,连上售气机即可安全运行。
三、国内CNG加气站技术
中国石化集团公司江汉三机厂生产的撬装式结构和其他部分厂家生产的开放式结构产品基本反映了目前国内CNG加气站的技术水平。脱硫设备和干燥设备比较庞大,一般采用水冷却和后置净化干燥处理方式,管路复杂,无法在工厂内完成安装调试,质量控制有一定困难。
1.天然气压缩机
国内天然气压缩机技术与国外相比有较大的差距,目前广泛应用的是重庆气体压缩机厂和自贡高压容器厂生产的产品。
2.净化设备
(1)脱水干燥设备压力高达25MPa,对容器的制造工艺要求较高,需要配置较大的水池、冷却塔等设备,使整个系统复杂,不宜与撬装式压缩机相匹配。
(2)由于各地天然气的气质和含硫量不同,所选用的脱硫工艺和设备也有较大不同。
3.控制系统
加气站控制系统多数为常规电器控制,比较简单。
4.售气机
目前国内目前多数厂家生产的售气机技术性能和精度不高,稳定性和可靠性差,故障率较高。
四、国内加气站发展方向
根据中国国情,将国内多年来CNG加气站积累的成熟经验总结继承下来,同时积极借鉴国外先进技术和服务理念,使我们开发研制的CNG加气站成套设备,达到起点高,性能稳定,技术完善,安全可靠的目的。为了赶超国外CNG加气站的技术水平,应从以下方面去努力。
1.集装式设计,模块化安装
加气站应进行集装式和模块化设计,使之成为一种标准化的成套设备。具有较高的灵活性和可靠性,能方便运输、简化安装、变形安装、减少占地面积、缩减投入运行成本,以满足不同用户和不同地区建站的要求。
2.完善安全措施,提高自动化程度
为了减少人为不安全因素的影响,要提高加气站自动化程度,完善监控、安全保障措施。
3.提高集成化,加强质量控制
结合用户情况提高加气站集成化程度。将加气站主要设备(干燥器、储气瓶组)全部集成到橇装里去,设备只剩下售气机。在工厂里完成全部安装调试任务,在生产制造环节加强质量控制,确保设备安全。
4.加强技术合作,提高管理水平
在国产化过程中应积极寻求国际合作。通过销售、合资合作等多种方式,引进国际CNG先进技术和管理经验,使我国CNG 技术的发展与世界一流水平保持同步,就能在市场竞争中占据较强的优势。
参考文献
[1]周淑慧.高峰 国内外天然气汽车和加气站的发展现状及在我国的发展前景(二)[期刊论文]-中国能源2002,156(12)
[2]徐涛龙.姚安林.杨春.蒋宏业 城市CNG加气站事故致因机理分析[期刊论文]-重庆科技学院学报(自然科学版)2010(3)
[3]高猛.王宪.GAO Meng.WANG Xian 压缩天然气站投产及运行中应注意问题的研究[期刊论文]-山西建筑2010,36(31)
1. 前言
SiC颗粒增强铝基复合材料因其具有广泛的、潜在的应用价值,是在目前非连续增强金属基复合材料中研究较多,较为成熟的复合材料。SiC颗粒增强铝基复合材料具有高比强度和比刚度、耐磨、耐疲劳、低热膨胀系数、低密度、高热导性、良好的尺寸稳定性和高微屈服强度等优异的力学和物理性能,被应用到汽车、航天、军事、电子和其他工业领域。从二十世纪八十年代初,世界各国开始竞相研究开发这种新型高性能材料。SiC颗粒增强铝基复合材料正受到越来越广泛的重视。
2. SiCp/Al复合材料在电子封装中的应用
随着电子装备的日益小型化、多功能化,LSI、VLSI不但集成度越来越高,而且基板上各类IC芯片的组装数及组装密度也越来越高(如MCM),也就是说,功率密度(输出功率/单位体积)越来越大。20世纪80年代末的功率密度为2.5W/cm 3 (40 W/in 3 ),而90年代己达6W/cm 3 (100 W/in 3 )以上。如何将产生的大量热量散发出去,这是电子装备在一定环境温度条件下能长期正常工作的保证,也是对电子装备的可靠性要求。在这类功率电路的电参数设计、结构设计及热设计三部分中,热设计显得更为重要。因为热耗散的好坏直接影响着电子装备的电性能和结构性能,甚至可引起重要电件能失效和结构的破坏。据统计,在电子产品失效中,由热引起的失效所占比重最大,为55%。由此可见,解决好热耗散是功率微电子封装的关键。
为从根本上改进产品的性能,全力研究和开发具有高热导及良好综合性能的新型封装材料显得尤为重要。热膨胀系数(CTE),导热系数(TC)和密度是发展现代电子封装材料所必须考虑的三大基本要素,只有能够充分兼顾这三项要求,并具有合理的封装工艺性能的材料才能适应电子封装技术发展趋势的要求。而SiC颗粒增强铝基复合材料则恰恰是既具有铝基体优良的导热性又可在相当广的范围内与多种材料的CTE相匹配的复合材料。 [1 ~ 2]
对表1中列出的芯片材料 Si、GaAs 以及各种封装材料的性能指标进行对比,不难看出,传统的材料如Al、Cu、Invar合金、Kovar 合金、W/Cu 合金、Mo/Cu 合金等 ,不能满足先进电子封装应用中低膨胀、高导热、低成本的严格要求。而Al 2 O 3 和BeO材料是广为使用的电子封装材料,但由于综合性能、环保、成本等因素,已难以满足功率微电子封装的要求。SiC颗粒增强铝基复合材料具有与Si、GaAs相匹配的热膨胀系数(CTE)以及强度高、重量轻、工艺实施性好、成本较低等特点。
因此,既具有优良的物理、机械性能,又具有容易加工、工艺简单、成本低廉、适应环保要求的新型微电子封装材料——SiC颗粒增强铝基复合材料——已能全面满足高密度电子封装技术的要求,成为最具有发展前景金属基复合材料。
表1 常用封装材料性能指标 [3]
引言
大唐国际多伦煤化工项目是我国“十二五”规划重大化工项目之一,它横跨气化、变换、低温甲醇洗、甲醇压缩合成四大工段,涵盖三项世界之最,项目从2008年开始建设。然而,进行前述工序的前提就是将褐煤干燥。通过国外调研,发现德国ZEMAG(泽玛克)的管式干燥机运行安全可靠,干燥程度深,在褐煤气化中广泛应用,遂决定采用管式干燥机。由于管式干燥机进口费用大(是国产费用的3倍),我厂在大唐国际的应邀下从2006年开始研发设计管式干燥机。管式干燥机是一个倾斜的多管式回转圆筒,筒体外径5.3m,长度8.0m,倾角12°,干燥管数量1548根,干燥管通过前后端管板固定,整体重量达225t。筒体中心由长约10.3m的轴支撑在两端的轴承座上,大齿圈安装在干燥机前端,电机通过减速器带动小齿轮,小齿轮和大齿轮啮合传动,干燥机额定转速8rad/min,下图为管式干燥机结构外形图。根据输煤车间设计布置,干燥机前端安装在11m钢梁平台,后端安装在9m平台[1]。
图1 管式干燥机结构外形图
1-进料口 2-进汽管路 3-进料端轴承箱 4-大齿圈 5-传动装置 6-筒体
7-带螺旋片的换热管 8-载湿气体出口 9-出汽管路 10-出料端轴承箱 11-出料口 12-轴
1.干燥机组装方案的确定
由于干燥机单机重量大,整体直径达5.3m,若在制造厂内组装后再运输到现场能节省不少现场安装费用,并且组装工器具较为齐全,但是整体直径加运输车体高度达6m,超过我国公路运输限高的要求。经过开会讨论决定干燥机分中心轴、干燥管、管板、筒体(分三段)、进出料装置、进出汽管路、传动装置七部分厂内加工好,运输到现场再组装。[2]
1.1中心轴组装方案选择[3]
根据受力分析,干燥机载荷全部传递到干燥机中心轴前后端,中心轴组装好坏直接关系到干燥机的平稳运行。关于中心轴的组装主要有两种工法,第一种:将中心轴制造成一根整轴进行热处理和机加工,这样能保证干燥机轴颈有较好的同轴度。根据国外干燥机制造调研,就是将中心轴做成一根整轴,它要求制造厂具备大型轴类设备机加工能力。但是,此方案造成孔板同轴的环焊缝为立焊,增加了操作难度,消除焊接应力难度较大。第二种,通过干燥机受力分析,得知干燥机荷载主要集中在中心轴前后端轴颈,这样将中心轴分为三段制造,再现场组焊。前端轴颈、后端轴颈采用ZG35GrMo高合金钢制造。此种方案中心轴同轴度的调整、空心轴内外焊接消除应力是关键控制工序。根据我厂目前加工能力不够、现场组装情况决定采用第二种方法将中心轴进行组装。
图2 中心轴组装划分
1.2管板组装方案选择[3]
管板的制造和组装也是干燥机安装重大工序。在一个5.3m直径,厚90mm的16MnR钢板上如何加工出1548个孔成为关键问题。最初方案拟采用三块120°料进行拼接。后根据受力分析,干燥机在转动时,转矩通过管板传递到干燥管上,干燥管数量多,所以转动力矩也大,采用此方法,会引起管板强度下降。通过讨论最终决定采用一块长方形板,宽大于1.4m(在中间开出φ1400的圆),另外用两块钢板补缺,拼成整圆。然后通过车床采用模具定位加工出1548个小孔,然后再阔孔到设计尺寸。这样加工复杂,但保证了管板的整体性。
图3 管板组装方案对比
1.3干燥机组装流程[4]
干燥机前端横梁安装中心轴组装管板焊接、组装对中、校准同轴度焊接筒体穿管焊接出汽管路组装水压试验安装前后端轴承箱、轴承座干燥机运输、吊装干燥机后端横梁安装调标高及倾斜度安装驱动装置对中、校准传动部件安装干燥机进、出料装置安装进汽管路安装保温层
2.干燥机吊装方案
干燥机吊装属于超过一定重量的分部分项工程,所以施工前进行了吊装专项方案的论证。根据在国外考察管式干燥机时,看到在每台干燥机下面有一小车,后经分析得知此小车是用来托起干燥机,检修干燥机轴承的。对此技术人员提出采用“拖排”就位干燥机的方案[5]。根据厂房设计,干燥机安装在厂房B列到D列之间,进料端标高11.0m,出料端标高9.0m。吊装步骤如下:
(1)支撑架基础设计时应根据总的吊装荷载设计,不小于360t;运输滑道总荷载按310t考虑。
(2)根据设备尺寸及厂房结构制作专用于干燥机吊装的支撑架、行走架、吊装扁担、运输滑道等工具,准备4台100t液压提升装置及钢绞线、猫爪等附属工具,准备1台10t卷扬机和1对30t滑轮组。
(3)安装液压提升装置及其支撑架、行走架、运输滑道,穿钢绞线,采用钢丝绳进行连接吊装扁担与干燥机、运输滑道与支撑架。
(4)15台干燥机组装后运输至现场,采用1台500t履带吊将干燥机起吊至9.5m,然后用一台30t汽车吊斜拉其进入厂房内,平稳安放在支撑架上。
(5)采用卷扬机拖动行走架至厂房内干燥机就位位置,采用4台100t液压提升装置调整干燥机位置,安装支撑梁后落下干燥机就位。
3.干燥机组装
3.1中心轴、管板组装
将分为三段的中心轴对准后进行焊接,然后整体加工到设计尺寸,这样保证了轴的同轴度。然后将孔板装在两个胎具上和中心轴组装在一起,用胎具保证孔板和中心轴的垂直度和同轴度,用螺栓和钢管将胎具和中心轴锁固,使中心轴和两块管板牢牢连接在一起。焊接环焊缝,再焊接筒体。
3.2 筒体卧式组对及找正工装
(1)直线度测量[6]
筒体环缝采用卧式组对,为方便筒体组对,可制作外夹胎具,如图4。将外胎具放在自制的平台上,利用外胎具控制筒体的整体组对后直线度Δδ≤4mm。筒节0°、90°、180°、270°四个方向焊上定位块,定位块要经过加工。用0.5 mm钢丝绳进行测量钢丝绳放在90度直角槽中,靠M10的螺丝孔来拉紧钢丝。
图4 筒体直线度测量示意图
(2)激光四点找正[6]
筒体组对质量是整个设备能否正常运转的关键,它包括所有附件为同步加工,它们的同轴度应具有一致性。采用四点激光透光找准的方法来保证机身的同轴度,可在筒体4个胀圈中焊接固定环,固定环的内圆与筒体外圆同心。固定环的内圆在加工筒节坡口时同时进行,保证同心度不大于0.2 mm。在固定环的中间套上一个定位快,定位快的中心加工1 mm的穿透孔,利用激光直线传播的特点,保证四个定位快的中心孔在同一直线上。如此来保证筒体的直线度、同心度,找正示意图如图5。
图5 激光四点找正示意图
(3)干燥机穿管焊接[7、8]
根据在国外考察,管式干燥机干燥管同管板是采用胀接连接的,但我国目前胀接技术落后,难以保证连接强度(干燥管是在管板带动下转动的),只能采用焊接。由于干燥管数量较多,人工焊接耗时大,焊接质量难以保证。经过讨论提出采用不填丝自动钨极氩弧焊工艺,电源采用直流正接,较高且持续时间较短的脉冲(峰值电流)和较小的基值电流(维弧电流),这样稳定了电弧也减少了焊缝夹钨缺陷。
图6 干燥管、管板焊接
4.干燥机水压试验
管式干燥机属于低压容器,根据压力容器设计规范,在使用前应对其进行水压试验。由于工期紧张,现场组装量大,干燥机安装决定着下一工序。针对此局面有人建议:将干燥机组装、吊装就位后,再进行水压试验。由于此方法试验时,干燥机以12°安装在钢架上,进行水压试验需向筒体内注水约60t。这样增加了干燥机轴承受力,干燥机弯曲挠度增加,影响干燥机同轴度[9],轴同轴承箱密封间隙增大,使其运行时轴承箱漏油增大。最终决定将干燥机组装后,在地面对其进行水压试验,筒体两端安放在与筒体相同弧度的凹槽内。试压过程如下:
(1)干燥机筒体中充满水、筒体内的气体排净,筒体外表面保持干燥,当筒体壁温与水温接近时,缓慢升压至设计压力0.5MPaG,确认无漏后继续升压至试验压力0.625MPaG,稳压30分钟,然后降到0.5MPa,保压足够时间进行检查。检查期间压力应保持不变,不得采用连续加压来维持试验压力不变。
(2)设定安全溢流阀压力值为0.625MPa。
(3)检查中若无破裂、变形及漏水现象,则视水压试验合格。
(4)试压过程中如出现漏点,先做好标记,视情况决定是否需要立即停止加压,但不得带压处理和带水处理,消缺后重新进行试压。
(5)在试压过程中,记录表1、表2的压力值,读数以压力表2为准。
图7 水压试验示意图
1-带阀门的排气管 2-盲法兰 3-丝堵 4-托架 5-水箱
6-打压水泵 7-带孔法兰 8-装有压力表的丝堵 9-带出气阀的法兰
5.结论
通过对大唐国际多伦煤化工管式干燥机组装分析,得出了管式干燥机主要安装注意事项:
(1)干燥机荷载主要集中在中心轴前后端轴颈,将中心轴分为三段(前端轴颈、后端轴颈采用ZG35GrMo高合金钢,中心采用16Mn)制造,再现场组焊;解决了不具备大长轴加工能力的问题。
(2)筒体采用卧式组对,通过制作外夹胎具控制筒体的直线度Δδ≤4mm,采用四点激光透光找准的方法来保证机身的同轴度
(3)干燥管同管板焊接采用不填丝自动钨极氩弧焊工艺,通过试焊对焊接参数进行调整,保证了干燥机整体性强度。
(4)干燥机吊装采用主吊和辅吊(斜拉作用),先吊至预定的拖排支撑架上,采用卷扬机拖动行走架至厂房内干燥机就位位置。
中图分类号:TU74文献标识码: A
引言
风力发电机塔架是风力发电机中十分重要的部件之一。因此,在风力发电机塔架制造方面,对质量要求非常高,甚至是“严苛”。我国风力发电起步较国外晚,起步初期,注重不断借鉴国外设备及制造技术。当前我国装备制造科技水平得到显著提升。在科技高速发展的推动下,我国风电设备制造,由最初依靠进口,重点仿制到目前立足国内制造,经历了较长的发展历程。
1、影响风电塔架的质量因素分析及控制
目前,圆筒形塔架在风力发电机组塔架中大规模使用。因此,本文中将以圆筒形塔架为例来探讨影响风电塔架的质量因素及控制措施。影响塔架设备质量的因素涉及到设计、采购、制造加工、检验、包装和运输。其中影响塔制造质量的因素,可以从人员、设备、方法、材料、环境五方面的因素进行分析和控制。
1.1、人的因素
检查制造厂是否具备制造资质及质保能力,审查关键岗位人员资质。包括检查制造厂应具备压力容器制造许可资质证明、质保组织机构及相关质量认证,焊接人员应具备国家压力容器规定资格证,无损检测人员须持有国家规定的无损检测人员资格证书,II级资格以上人员才能出检测报告。
1.2、设备因素
检测设备是否满足生产需求,检查每个相关设备仪器是否经过有关部门测量验证。
1.3、工艺因素
检查是否有与之相关的工艺文件以及编制审批程序,同时检查内容的正确性合理性。在进行焊接之前,首先应该依照NB/T 47014―2011《承压设备焊接工艺评定》标准做好焊接工艺评定工作,同时编制焊接工艺规程。法兰、螺栓、钢板以及焊缝检查需要制定无损检测工艺书,其中包括的主要内容有确定检测方法、检测比例、验收标准以及合格级别等。
筒节同法兰之间进行组装、筒节的组装、门框的装配等都需要制定与之相关的组装工艺文件,其中主要内容组装时机、组装顺序、检验要求以及内容等。防腐之前需要确定好防腐等级、总干膜厚度要求、施工方法以及检测方法等等。
1.4、材料因素
检查钢板的质量证书和检验报告。锻造法兰必须符合NB/T 47008 - 2010“轴承压力设备碳钢和合金钢锻造标准”的要求。钢板拼焊法兰,法术焊缝不超过6块,检查法兰的质量证书、检验报告和几何尺寸加工精度、锻造法兰也应该检查其热处理报告。M20之上的高强度螺栓每批必须有第三方检查机械性能检测报告,并审查是否组织编写了力学性能检验项目。根据力学性能检验项目按GB/T 3098―2010《紧固件机械性能》系列标准执行。同时检查好焊材牌号、质量证明文件等等,并且检查好油漆材料牌号、颜色以及质量证明文件等。
1.5、环境因素
施工条件同工艺文件要求不相符合时,需要重新进行试验以及工艺评定,一旦发现其车间布局出现问题比如说交叉作业,需要第一时间通知相关方进行整改。
2、风电塔架制造过程之中的控制措施
2.1、原材料的选择
必须选用经过炉外精炼和真空脱气的钢锭或圆坯,决不能选用连铸板坯。
钢水在冷却凝固时,体积要收缩,最后凝固部分会因为得不到液态金属的补充而形成空洞状缺陷。大而集中的空洞称为缩孔,细而分散的空隙则称为疏松,它们一般位于钢锭中心最后凝固的部分,其内壁粗糙,周围多伴有许多杂质和细小气孔。
法兰产品的锻造流程为:可以加热墩粗(压下)冲孔碾环。钢材在进行加热锻造过程中,疏松在相应程度可获得一定程度的提升;然而若之前钢锭的疏松较为严重或者是其压缩比(压缩比必须大于 6)不足,则在热加工后疏松仍会存在,相应的疏松部析出的夹杂物即便经过热加工也无法去除。由于钢锭和圆坯的疏松部位集中在中心部位,在热加工过程之中应该经过冲孔工序方可将疏松部位全部去除。需要注意的是:钢锭以及连铸圆坯的区别是钢锭的中心收缩较连铸圆坯小,连铸圆坯只要中心去除的冲芯高出Φ280mm,就可以把收缩带除掉,因此,当前世界环形锻件原材料普遍使用连铸圆坯。然而锻造轴类锻件如果中心不去除冲芯,那么连铸圆坯通常是不能使用的。
2.2、焊缝检验
焊缝外观检查,用肉眼或低于10倍放大镜检查。质量要求:l)所有对接焊缝、法兰与筒体角焊缝为全焊透焊缝,焊缝外形尺寸应符合图纸和工艺要求;2)焊缝与母材应圆滑过渡,焊接接头的焊缝余高不超过3mm;3)焊缝不允许有裂纹、夹渣、气孔、漏焊、烧穿和未熔合等缺陷;4)咬边深度不超过lmm,且连续长度不大于100mm;焊缝和热影响区表面不得有裂纹,气孔,夹渣,未熔合及低于焊缝高度的弧坑;熔渣,毛刺等应清除干净;焊缝外形尺寸超出规定值时,应进行修磨,允许局部补焊,返修后应合格;对于无具体要求的,按相关规定执行。
无损检测,无损检测通常包括有超声波探伤、磁粉探伤、射线探伤以及渗透探伤等等,而在焊缝外观检验合格之后而进行,检测方法以及质量要求应该依照DB62/1938―2010《风电塔架制造安装检验验收规范》附录A((风电塔架无损检测规程》执行;全部的筒体纵、环焊缝及门框焊缝应该做好无损检测。法兰以及筒节的T型焊缝接头处均布片射线探伤,任何一个T型接头射线探伤都应放置布片两张,纵缝环缝位置各一张,每张检测的有效长度不小于250mm,每张底片均能清晰的反映T型接头部位焊缝情况。经射线或超声检测的焊接接头,如有不允许的缺陷,应在缺陷清除后进行补焊,并对该部位采用原检测方法重新检查直至合格。进行局部探伤的焊接接头,一旦出现有不被允许的缺陷时,则应该在该缺陷两端的延伸部位增加检查长度,增加的长度为该焊接接头长度的10%,且不小于25Omm,若仍有不允许缺陷时,同时对该焊缝进行100%检测。
2.3、探伤质量控制
塔架焊缝不仅仅需要在焊接之上对其进行严格要求,同时在探伤之上的要求也比较严格,在探伤质量控制上需要采取相应措施。首先,超探伤使用双侧探伤;射线探伤处因为结构有限制,调整好焦聚、做好补偿以保证成片率;其次,法兰筒节的几何焊缝结构比较特殊,超探准确性会受到一定的影响,可以使用超探加射线探伤的方法来进行质量控制;最后,环向焊缝因板材厚度的不同,促使超探准确率产生一定变化,所以,一方面应该使用全新的探伤方法试验,另一方面使用射线探伤来作保证超探准确率;而厚度差异比较大的部位(如:门框与筒节环缝的T型接头处)射线探伤就会受到一定的影响。那么就应该使用一些较为特殊的方法。
结束语:
尽管我国在风电设备制造方面取得了较大进展,并初步做到可以立足国内制造,但是对于风电塔架制造过程中存在的问题应对措施仍显单一,仍有较长的路要走,只有依托科技,不断创新,才能取得更大的发展空间,立足国际。
参考文献:
[1]张国良.北方重工风机塔架制造项目质量管理研究[D].大连理工大学,2012.
中图分类号: C35 文献标识码: A
1、前言
高炉煤气余热电站发电的一个重要过程就是将高炉产生的煤气通过锅炉燃烧把经过处理的水烧成蒸汽,然后供给汽轮发电机组发电。锅炉安装质量的好坏直接影响煤气利用率及蒸汽的品质的好坏,因此有必要对高炉煤气锅炉安装技术进行分析总结。本项目作为国家十大重点节能工程之一的钢铁行业纯烧高炉煤气锅炉发电装置,充分利用高炉煤气等可燃气体,以自备电站为主要集成手段,推动钢铁企业节能降耗,实现资源的综合利用,又可减少煤气直接排放带来的环境污染。
2、技术特点
2.1钢结构安装采用扩大拼装,减少了高空作业,节约了吊车台班。
2.2锅筒安装采用临时支架固定,待炉顶平台安装完后进行正式固定,优化了安装流程,节约了吊车台班,缩短了施工工期。
2.3合理安排锅筒、集箱管道焊接顺序,减少了焊接变形,提高了施工质量;锅炉管道焊接采用氩―电联焊,提高了焊接效率。
2.4膜式水冷壁采用倒装工艺。
3、技术原理
3.1合理安排施工顺序,保证施工的连续性,锅炉水冷壁的安装采用“倒装法”,减少了高空作业,缩短了施工工期。解决了现场空间狭窄的难题。
4.2根据吊装设备性能,合理选择组装单元,提高了吊装效率 。
4.3焊接制定多种预焊接工艺,评定合格后,选择焊接质量好、效率高的氩电联焊。
4.4锅筒、集箱管道密集,施工时合理选择安装、焊接顺序,有效提高了安装效率和焊接质量。
4.5详细介绍了每个步骤的操作要领、检测方法及安装精度要求。将设计要求和规范合为一体,使业主、监理、施工单位有一个共同的检验标准,让各方的工作便于协调统一,达到优质高效的目的。
5、施工工艺及操作要点
5.1.130t/h煤气锅炉安装工艺流程
图5-1 130t/h锅炉安装工艺流程
5.2施工关键技术
5.2.1施工准备
1).根据现场实际情况,科学合理地进行施工平面布置,主要包括钢架组装场地、水冷壁组装场地和搭建临时办公室及临时仓库。
2).架设施工临时用电, 施工用电采用三级配电方式,设立用电总开关、分开关及控制开关三级配电二级保护配电方式,设专人管理,各配电箱内安装漏电保护器,其漏电动作电流不大于30mA,动作时间不大于0.1S。
3).合理布置施工机具,电焊机集中布置,氧气、乙炔库相隔大于5m布置。
5.2.2定位放线
1).根据锅炉基础纵横基准线及标高基准点,对锅炉基础及辅机基础进行逐一定位复测,记录复测数据,与图纸及规范要求进行对照,看是否符合要求。基础复测合格后在基础表面标明锅炉设备基础的纵向、横向中心线和标高线的基准线。
2).检验土建单位提供的锅炉基础混凝土检验报告,看是否符合要求。
3).与土建单位办理基础移交手续.
5.2.3设备清点
根据锅炉制造厂供(货)清单与工艺图纸要求的设备清单,逐类逐项逐件清点与检查,应按其结构与类别特点依次检查其规格和数量是否准确和齐全。其中包括:
1).锅炉本体部分:包括主要受压部件(锅筒、各部集箱等);受热面管系统(水冷壁管、过热器、省煤器、下降管、导汽管等);膨胀系统(锅筒集箱上的膨胀板、环及膨胀批示器的指针刻度板等);燃烧、返料设备;金属构架(受压部件的柱、压力表、安全阀、水位报警器、低地位水位计等)及阀门(主汽阀、给水调节阀、给水止回阀、排污阀及其它附属设备用的阀门等)。
2).水冷壁部分:前、后、左、右侧壁及其附件等。
3).空气预热器部分:包括空气预热器本体、膨胀装置、风道等。另外,还要清点和检查与之相配套的标准件、垫料、填料等。
5.2.4.钢架组装及吊装
1).钢架组装样台的敷设
为了安全施工,减少高空作业和确保安装件的几何尺寸达到规程标准,根据现场实际情况,在现场选择合适位置铺设锅炉钢架组装样台,本锅炉的钢架、炉顶、膜式水冷壁根据吊装能力在地面上分段组合好,然后再吊装到位进行整体安装,尽量加大地面组装,提高效率。
(1)首先地面平整夯实,垫工字钢,每排工字钢间距1.5m,用水准仪找平,再铺设s=12mm的钢板,对接处用电焊分段焊接,面积约为12m x12m为宜。
(2)组装台设置在锅炉附近25m范围内,以便于吊装。
(3)将钢立柱平放在工装台上,将分段运到现场的钢柱,接好并焊牢。
2).钢架组装
根据锅炉设计图及到货的情况及现场场地位置的实际情况,锅炉框架由四根立柱及拉杆、平台、楼梯组成,其中每根立柱均分为三段散件供货,立柱之间由拉杆连接,所以锅炉框架可在地面组装场地进行预组装,组装方法为:
(1)柱Z1下段正、反两根立柱及拉杆组装为一件,组装后框架宽为9660mm,高为10000mm,净重7733.2kg,加上稳固支架300kg,重量为8033.2kg.
(2)柱Z2下段正、反两根立柱及拉杆组装为一件,组装后框架宽为9660mm,高为10000mm,净重7221kg,加上稳固支架300kg,重量为7521kg.
(3)柱Z1中段正、反两根立柱及拉杆组装为一件,组装后框架宽为9660mm,高为9200mm,净重6956kg,加上稳固支架300kg,重量为7256kg.
(4)柱Z2中段正、反两根立柱及拉杆组装为一件,组装后框架宽为9660mm,高为11000mm,净重7839.8kg,加上稳固支架300kg,重量为8239.8kg。
(5)柱Z1上段正、反两根立柱及拉杆组装为一件,组装后框架宽为9660mm,高为10800mm,净重7675.4kg,加上稳固支架300kg,重量为7975.4kg。
(6)柱Z2上段正、反两根立柱及拉杆组装为一件,组装后框架宽为9660mm,高为8700mm,净重5164.4kg,加上稳固支架300kg,重量为5464.4kg.
3).立柱的调校组对
由于运输或者其它原因立柱可能发生变形,故组队前应该对立柱进行调校,采用枕木加型钢作为找正架,每根立柱设置4组枕木作为支墩,高约1m,横向搁置20号工字钢并用水平仪找平,即可进行钢架的调校组队。
(1)立柱的弯曲度,立柱长度的1/1000,且不大于10mm;
检测方法:在柱子相互垂直的两个面的中心线的两端焊接L=150-250mm的垂直柱面的等高圆钢,拉钢丝,并将柱长按每米一等分,平均分成若干份后用钢直尺测量每一等分点的高度,即可计算出柱子的弯曲度。
(2)立柱的扭曲度,立柱长度的1/1000,当柱长<5m时,为3mm;当柱长>5m时为7mm。
检测方法:将立柱放置水平,在柱的垂直焊置等高圆钢,在圆钢顶部对角交叉拉两根钢丝,用钢板尺检测两钢丝中点距离,该距离的一半即为扭曲值。
调校的主要方法有:
a小型构件弯曲变形超过规范要求时,应采用冷调法进行调校,温度必须在0℃以上,从外界施加压力使立柱校正;
b大型构件变形超出规范要求时宜采用热调,加热采用氧-乙炔火焰加热,但特别注意加热温度须小于700℃,以防止构件脱碳、渗碳、过烧等现象;弯曲特别严重时现场无法调校,则需反应业主由制造厂进行处理。
锅炉钢结构安装采用整体方法安装,每两根立柱组合成一个整体:
组合时,按照图纸要求,将钢柱上所有的横梁、支撑、平台牛腿安装焊好,以柱顶面的标高确定立柱1m标高点(立柱上的1m标高线可作为以后安装锅炉各部件、元件和检测时的基准标高点),且根据技术文件的规定注意立柱的压缩值,组合后必须保持垂直、无扭曲、无弯曲。
5.2.5.锅筒的吊装
锅筒的吊装在立柱金属框架及楼梯平台安装完毕并经验收合格后,顶板安装前进行。
5.2.5.1.吊装前的检查
吊装前检查锅筒、集箱,应符合下列要求:
1).锅筒、集箱两端水平和垂直中心线的标记位置应正确,必要时应根据管孔中心线重新标定或调整。
2).锅筒、集箱表面和焊接短管应无机械损伤,各焊缝及其热影响区表面应无裂纹、未熔合、夹渣、弧坑和气孔等缺陷。
3).检查并彻底清除锅炉、集箱内外表面及管孔内油污及其它杂物。
4).锅筒吊装要点
本设备的锅筒采用吊挂安装,需将锅筒吊装到位用临时支架支撑好,等顶板及吊挂装置安装完成后,用吊挂装置将锅筒固定好后才能拆除临时支撑,移动吊装锅筒时撬棍不得插入锅筒上的管接头或管孔中,应对其做好保护避免损坏且锅筒壁上禁止引弧施焊。
5.2.5.2.吊装准备
本锅炉锅筒长度为12400mm,而锅炉框架宽仅为8960mm,锅筒两端长度超出框架长度1720mm,所以锅筒既不能从框架内部提升至安装位置,也不能从外侧横穿吊放至安装位置,所以锅筒必须在锅炉顶板安装前吊装就位,否则锅筒很难就位。
锅筒的设计安装中心标高为28880mm,锅筒的内径为1600mm,锅筒的壁厚为46mm,锅筒的底部筒外壁设计安装标高为28880-1600/2-46=28034mm;锅筒中心轴线距最近的立柱Z1柱中心线距离为1300mm,在锅筒设计安装标高下方(锅炉框架的两侧面)有两根连接柱Z1上与柱Z2上的横拉杆(横拉杆为两根18#槽钢内扣焊接成方形),两根横拉杆的中心标高为25800mm,拉杆顶部标高为25820mm;锅筒的外径为1692mm,在锅筒的设计安装位置没有任何设计支撑。
在吊装之前必须为锅筒的就位制作一个坚固的临时支架,两端支架上锅筒就位点分别制作一个高为100mm的马鞍座(马鞍座与支架之间留10mm作为调整间隙),锅筒支架的宽度等于柱Z1上框架的宽度为8960mm,支架长为9114mm,支架高度为28034-25820-100-10=2104mm.马鞍座示意图如下:
图5-2 锅筒临时支架示意图
注:马鞍座宽为250mm,圆弧板宽为250mm,弧度为90°
就位后锅筒重量集中在支架两端横梁上,两端横梁因受压产生弯矩,锅筒本体净重26357kg,所产生的压力为263.57KN,每根横梁承受的压力为131.79KN,对横梁进行受力分析,如下:
图5-3 横梁受力分析示意图
式5-1
式5-2
横梁所受最大弯矩式5-3
经查Hw300×300×10×15的型钢的截面面积为117cm2,截面抵抗距为Wx=1328.85cm3
〔σ〕钢材的许用应力取140MPa,抗弯截面模量Wx=1328.85×10-6
横梁的抗弯力矩:
所以选用Hw300×300×10×15的型钢作为临时支架制作型材,材质为Q235B.临时支架制作如图所示:
图5-4 上锅筒支架图
图5-5 锅筒支架图节点1详图
图5-6 锅筒支架图节点2详图
图5-7 锅筒支架图节点3详图
5.2.5.3.吊装方法
在锅筒吊装前,锅筒马鞍座用螺栓固定在锅筒支架纵向中心线上,锅筒本体上不得焊接吊耳,所以锅筒吊装需用钢绳或吊带在吊点位置缠绕捆绑吊装,锅筒外桶壁上管接头排比列较密集,为避免吊装时勒伤管接头,锅筒的吊点位置选在锅筒两端距离锅筒横向中心线3860mm的位置(即锅筒吊挂装置的设计安装位置)。起吊前应用麻绳栓牢锅筒两端,起吊时,地面人员拉稳麻绳并调整锅筒的有利吊装姿势,以免在高空发生锅筒抗杆。在锅筒吊装就位后,调整锅筒锅筒水平度,使锅筒保持水平,调整完毕,固定好锅筒马鞍座后松钩。
5.2.5.4.钢绳及吊车的载荷计算及选用
1).钢绳的选用
锅筒本体净重26.357t, 构件长度为12400mm,用两根钢绳(或吊带),每根钢绳(或吊带)在吊点位置环抱锅筒吊装,相当于4根钢丝绳受力,拴挂点间距为7720mm,钢绳角选用600,经计算选用8倍安全系数时,每根钢丝绳承受的拉力为608 KN,6x37钢绳折扣系数为0.82,则需选用的钢绳破断力不小于714.5KN,选用钢丝绳型号为:6×37+FC1770 Φ38,2根钢绳(破断拉力为753KN),每根钢绳长为:18.70m.卸扣选用20吨2个备用。吊装时,锅筒与钢绳之间须垫10mm左右厚胶皮(或在钢绳上缠布条)以防钢绳滑动勒伤锅筒上管接头。
2).吊车的选用
钢绳角以最大计600,锅筒外径为1.692m,钢绳高度为6.686m,吊钩预留1.5m,锅筒跨越立柱柱头,所以需要的起升高度为:30+1.692+6.686+1.5=39.878m。
吊车实际吊装高度及臂长计算如下:
考虑到框架中心到框架柱之间的距离为4650mm,吊车回转中心到支架柱边距离6m,吊车支车位置在锅炉横向中心线上,锅筒纵向中心线距锅炉横向中心线3450mm,计算出回转半径为11.195m,臂长为41.42m,考虑吊钩及钢绳重量1.5t,总吊装重量为27.857t,起升高度为39.878m.
在锅炉侧面标高28034mm位置有一根Hw300×300×10×15的型钢锅筒支架。经计算,在此标高位置,锅筒就位中心点与吊车臂之间的最大抗杆距离L1=5.217,汽车吊在起升高度为39.878m时,吊车臂与锅筒就位中心之间的距离Lk1 L1,才能满足吊装要求。
设当Lk1>5.217m时,吊车旋转半径LK=12m不变,则计算吊车主臂长L:
利用三角形相似定理可得:L1/LK=(H-28.034)/H,H=h+28.034;
注:H为吊车起升高度,h为标高28034mm位置处锅筒支架与吊车臂顶点之间的距离。
经计算,吊车起升高度H=52.50m, 标高28034mm位置处锅筒支架距吊车臂顶点距离h =24.47m,则吊车臂长须为L=53.68m.
查徐工QAY240t汽车吊性能表:
当回转半径LK=12m,臂长L=54.5m,配重75t,全伸腿时起重量为29t27.857t,且吊车臂不抗杆,所以徐工QAY240t汽车吊能满足吊装要求,选用徐工QAY240t汽车吊作为锅筒吊装的主吊工具。
下图为锅筒吊装示意图:
图5-8 锅筒吊装立面示意图
图5-9 锅筒吊装平面示意图
5.2.6受热面管子的安装
5.2.6.1.受热面描述
为了减少空中安装的难度和危险,加快安装进度和确保安装质量,受热面水冷壁等根据吊装能力尽可能在地面组合成后进行吊装,过热器、省煤器蛇形管排捆扎吊装。吊装时,炉后吊装工作量相对较大,可安排炉后、炉前两路同步进行吊装:空气预热器、过热器、省煤器蛇形管排一路;炉膛水冷(屏)壁一路;前、后、左、右水冷壁各3道管屏,分上、中、下三段,燃烧区域水冷壁 ,水冷壁角组件,还有部分散管和散件。
5.2.6.2.水冷壁施工流程
工机具准备设备运输、铺开、检查管子通球集箱、管排加固、限位、管子对口验收拼缝、刚性梁及附件安装验收、加固组件吊装找正对口刚性梁附件安装 整体找正、验收。
5.2.6.3.作业程序
(1)设备清点,二次转运、铺开,外观检查。
(2)集箱清理吹扫、管子通球、合金钢部件光谱复查。
φ60×5管弯曲半径R=300 通球球径φ42.5mm
φ60×5管弯曲半径R=200 通球球径φ42.5mm
φ60×5管弯曲半径R=130 通球球径φ37.5mm
5.2.6.4.组合、吊装
1)左、右侧水冷壁上集箱与上部、中部管屏、刚性梁分别整体组合,组件在组合场组合后,由卷扬机滑轮组抬头,25T汽车吊抬尾,从炉侧地面拖进炉膛位置,然后用卷扬机从炉底吊装到空中,再用另一卷扬机吊点接,到位后直接穿销子就位。
2)后水冷壁上集箱与上部、中部管屏、刚性梁分别整体组合,组件在组合场组合后,由卷扬机滑轮组抬头,25T汽车吊抬尾,从炉后地面沿锅炉中心线拖进炉膛位置,然后用卷扬机从炉底吊装到空中,再用另一卷扬机吊点接,到位后直接穿销子就位。
3)前水冷壁上集箱与上部、中部管屏、刚性梁分别整体组合,吊装方式和侧水组件类同。
4)左、右侧水冷壁下集箱与下部管屏、刚性梁分别整体组合。
5)前后水冷壁下集箱与下部管屏、连接件分别整体组合。
5.2.6.5.水冷壁吊装力学分析
1)通过分析组件危险截面的应力为如下,应不大于材料的许用应力。计算公式如下:
式5-4
式5-5
式中 N-管子的根数
由于管与管之间的连接扁钢在中性轴上,其惯性距可以忽略不计。
图5-9水冷壁排管示意图
2)计算钢丝绳的大小
(1)其动载荷为P=1.1P0。用阻力系数法计算出绳端拉力:
式5-6
出绳端斜拉角α0 ,所以出绳实际拉力为:
式5-7
(2)求牵引钢丝绳直径,取安全系数值K=5.5,
需钢丝绳破断拉力:
式5-8
5.2.6.6.吊装顺序为:
左水冷壁上中段组合件 左水冷壁下段组件右水冷壁上中段组合件 右水冷壁下段组件 前水冷壁上中段组合件后水冷壁上中段组合件前水冷壁下段组件 后水冷壁下段组件 水冷壁角部组件其他零散附件。
5.2.6.7. 找正安装对口
下部管排每吊完一段后进行对口焊接。
5.2.6.8. 炉膛水冷壁整体找正并验收后拼缝密封,刚性梁连接、炉墙附件安装。
5.2.7 空气预热器安装
钢管空气预热器在安装前应检查管箱的外形尺寸,清除管内的尘土、锈片等杂物,检查管子的焊接质量并在预装场安装好防磨套管,然后用平板车运至吊装点进行吊装。吊装就位时,在管箱下的管板与支撑梁间垫上δ=10mm的石棉板以保证密封和管箱的热膨胀要求。波形伸缩节、密封板、型钢的焊缝必须按图纸全部焊完,保证密封不漏,相邻管箱波形密封板的两端要用钢板密封。
5.2.8省煤器安装
省煤器同样采用单排单根组装方法进行。先在地面进行单排单根检查、调校、通球、吹扫,在省煤器联箱安装好后,将蛇形管捆扎吊至安装位置。安装基准蛇形管并检查弯头端部长度符合要求后,焊接蛇形管。再依次安装其余管排,直至安装完成。
5.2.9过热器安装
高、低温过热器采用单排单根组装方法进行。过热器管在安装前用压缩空气进行吹洗和通球试验。组装过热蛇形管时,应将联箱校正固定后安装基准蛇形管,减温器安装前要进行抽芯检查,并对其盘管进行水压试验。检查联箱管头对接情况和联箱中心线距蛇形管口端部的长度偏差合格后,再安装其余排管。
5.2.10 锅炉管道及阀门的安装
1.锅炉本体管道安装
锅炉本体管道安装除了要控制好管道水平度、垂直度外,管道焊接是主要的质量控制要点.
1)为确保焊接质量,锅炉本体的管道采用氩电联焊的工艺和方法。
2)本体管道焊接方法,坡口型式和焊接材料的选择见表5-1:
表5-1 锅炉本体管道焊接方法、坡口型式和焊接材料的选择
3)采用对口钳组对焊口,保证管子垂直度和控制对口错边量小于0.1S,且不大小1mm,坡口加工详见图。
图5-10 坡口加工示意图
4)焊条、焊丝应有制造厂的质量证明书。合金钢、焊丝、焊条应进行光谱检验。焊条使用时必须烘干,R317、J507烘干温度为350-400℃,恒温1-2小时,而后放在100-150℃保温,随取随用。
5)焊口点焊1-2点,每点长约10mm,厚度不超过壁厚的2/3。氩弧焊的焊接规范参数见(表5-2):
表5-2 氩弧焊焊接规范参数
表5-3手工电弧焊焊接规范参数表
表5-4 管道焊接接头热处理温度与恒温时间表
8)焊缝经热处理后,用携带式硬度计检查热处理焊缝的硬度,主给水管焊接一般不超过母材布氏硬度HB100,且不大于300,其标准为:合金总合量<3%,HB≤270,合金总合量3%-10%,HB≤300。
2.锅炉本体的阀门安装
1)所有本体阀门(除有特殊要求说明外)安装前均须检查、清理,装配好密封面和填料,经单个水压试验不漏。安装位置除规定外,应设置在便于操作和检查维护的地方。
2)阀门用清水进行试验,试验压力为工作压力的1.5倍。试验或研磨修理合格后阀两端口封闭保护,最好拆下手轮防止安装前阀门开启脏物进入密封面。
3)阀门安装注意介质流向,注意方便开关,其平直度符合规范要求。
4)锅炉安全阀的安装:各种安全阀安装前应解体检查,其材质、加工精度,配合间隙,可调行程等。
5)安全阀必须垂直安装并应装设有足够截面的排汽或排水管,其排放管应畅通并直通安全
排放点。排汽管底部应装有疏水管,排水管应有防冻措施。
6)电动阀门的传动装置,应方便操作和检修,其行程开关应调整至保证足开和关严及在规定的力矩范围内自我保护状态下关或开。
7)放空气阀应设在各管道最高处,阀门设置应便于操作,管道上的放空气点开孔在按图纸规定进行,放空管的装设必须重视并保证角焊缝质量,管道布置时应考虑有适当的柔性,以补偿膨胀。
6.总结和展望
本文主要介绍了130t/h煤气锅炉的安装关键技术,包括锅炉支架的安装、锅筒临时支架的设计验算、锅筒吊装、受热面管道安装及管道的焊接等关键技术。通过对上述各要素的分析和总结,希望对同类设备的施工提供有益的参考。同时也是对自己的技术管理能力的一次有益的总结和提升。
参考文献:
0.前言
钢结构建筑具有强度高、自重轻、施工速度快、抗震性能好、节能环保及工业化程度高等特点,是我国十五期间重点推广项目之一。随着城市建筑业的迅速发展,高层钢结构工程应用越来越多,合理确定钢结构安装的施工顺序、采取各种措施提高安装质量是保证整个工程质量和工期的关键。论文参考网。一旦钢结构在施工过程中出现了问题,就会带来许多后患。轻者会影响工期,破坏结构外观,浪费材料等;重者则可能会造成人员的伤亡,甚至给社会带来严重的不良影响。因此,对于钢结构工程的施工必须严格控制,防患于未然。
1.钢结构施工中存在的问题
钢结构工程施工中产生的问题,是由于施工单位施工不善而造成的。论文参考网。主要问题有以下几点:
(1)不熟悉图纸,盲目施工,图纸未经会审,仓促施工;未经设计部门同意擅自修改图纸。
(2)未按相关施工验收规范施工。
(3)未按相关操作规程施工。
(4)施工方案不周全,质量管理紊乱。
2.两种钢结构的施工技术
2.1 钢结构厂房的施工技术
钢结构构件主要制作工艺流程为:放样F料电脑编程拼板一CNC切割组立埋弧焊接钻孔组装矫正成型铆工零配件下料制作组装焊接和焊接检验防锈处理、涂装、编号构件验收出厂。钢材不易久放露天,造成母材锈蚀过度而不合格;焊接材料受潮后不能施焊等;构件严格按照操作流程制作。
钢结构厂房施工技术:综合考虑工程特点、现场的实际情况、工期等因素,选择合适的吊装设备、安装设备等。
(1)地脚螺栓的安装:地脚螺栓的精度关系到钢结构定位,地脚螺栓的埋设须严格保证其精度,地脚螺栓的埋设精度:轴线位移±2.0mm,标高±5.0mm。
(2)钢架安装顺序:钢柱钢梁吊车梁连系梁水平支撑檩条拉杆隅撑。
(3)钢柱吊装:钢柱安装前应测出钢柱牛腿面的标高,以此标高反算到柱脚及基础支承面标高,并予以调整支承面。
(4)钢梁的安装:首先在地面胎架上拼接成整体,同时在钢梁上架设好生命线,安装檩条时可以在钢梁上来回走动,吊装就位后在钢梁的两侧用缆风绳将钢梁固定,保证钢梁的平面外的稳定,然后吊装下一跨间钢梁,待下一跨间钢梁安装完成后,在此跨间安装檩条,固定钢梁,保证钢梁不会倾斜扭曲。
2.2 高层建筑钢结构的施工技术
我国的高层与超高层钢结构建筑自改革开放以来已有20年的历史,并在设计和施工中积累了不少经验,我国已自行编制了《高层民用建筑钢结构技术规程》。针对高层建筑钢结构安装构件数量多和施工技术复杂的特点,对关键工序进行了研究,通过编制各种专项施工技术方案及质量控制措施,实现高精度安装、快速完成工期的目标。
高层建筑钢结构的施工技术具体有:
(1)地脚螺栓预埋:地脚螺栓预埋位置的准确程度对钢结构工程整体的安装质量至关重要,为保证地脚螺栓的定位准确,采用适宜厚度的钢板制作加工成定位钢板,进行地脚螺栓的定位固定。
(2)钢柱的安装:钢柱标高的控制一般有两种方式:一是,按相对标高制作安装钢柱的长度误差不得超过3mm,不考虑焊缝收缩变形和竖向荷载引起的压缩变形,建筑物的总高度只要达到各节柱子制作允许偏差总和及钢柱压缩变形总和就算合格;二是,按设计标高制作安装土建的标高安装第一节钢柱底面标高,每节钢柱的累加尺寸总和应符合设计要求的总尺寸,每一节柱子的接头产生的收缩变形和竖向荷载作用下引起的压缩变形应加到每节钢柱加工长度中。
(3)钢梁的安装:钢梁安装的重点在于控制钢梁与钢柱连接形成整体后的轴线位置及垂直度,可通过限位钢板临时固定、多次反复校正逐步完成。
(4)焊接:高层钢结构的现场焊接顺序
应按照力求减少焊接变形和降低焊接应力的原则加以确定。在平面上,从中心框架向四周扩展焊接。
电子产品就是借助电子运行形式进行工作的产品,我们称其为电子产品。而电子产品的加工工艺就叫电子工艺。电子工艺是在电子产品设计和生产中起着重要作用的、并且曾经不受重视的工程技术学科。随着信息时代的到来,人们认识到,没有先进的电子工艺就不能制造出高水平、高性能的电子产品。并且涉及众多的科学技术领域和具有形成时间较晚而发展迅速的特点。广义的电子工艺分为基础电子加工工艺和电子产品加工工艺。而基础电子加工工艺技术在国内相对落后,主要技术掌握在欧美等发达国家手里,因此本文略过此部分。电子产品加工工艺在国内相对发展较快。但在电子产品加工工艺又包含电子装联工艺和零部件制造工艺,而电子装联工艺由整机组装工艺和PCBA制造工艺两部分组成
1.资料与方法
一般资料:首先,调查与了解目前市场上电子产品加工工艺的背景,意义及电子产品加工工艺目前的状况,接着分析电子产品从设计开发到生产的总体环节和状况,从整体上介绍了电子产品的加工工艺位于电子产品整个流程的后阶段,以便在介绍电子产品加工工艺环节时所涉及的相关内容易于理解,并同时对每个流程模块做了相应的简述,对于联系到电子产品加工环节的小批量生产做了相应剖析,介绍具有探索性和研究性小批量生产是为了对应到大批量生产所需要验证的对应项目、工艺参数要求及产品的品质信赖性验证测试,为弱化大批量生产介绍和探讨作讨论。
电子产品的加工工艺和探索背景:在电子产品盛行的今天,电子产品随着社会的发展,已经在轻薄小的方向上迅猛前进,这就是现在越来越流行的小型化和轻便化的电子产品趋势,该趋势势必导致电子元器件的小型化和电子加工工艺的高难度,同时也带来了电子生产成本的增加和激烈的竞争,这种小型化高难度电子加工工艺问题的良好掌握,往往决定着公司特别是国际性电子加工公司在竞争中的升降,也往往决定着它们的未来。其次电子产品的加工生产随着社会的普及和加工公司的增多,已经越来越向微利化方向发展,这就要求各公司或企业在效率化和规模化上更胜一筹,否则其高昂的成本压,力将让企业无法前进。这种效率化和规模化使得公司或企业不得不在电子加工生产工艺上投入更多的研究和探索,以争取更高的效率和优化的规模为公司的良好发展奠定基础。再次,电子产品的终端应用因各种原因造成的可靠性和信赖性问题一直受到社会的广泛质疑,往往承诺三年的质量在几个月的时间就走到了尽头,有些甚至还没开始使用。为了良好的质量和终端应用的口碑,更为了公司或企业的良好发展,各电子加工司或企业不得不从设计和加工工艺环节来提高可靠性和信赖性,以促进公司或企业适应社会潮流趋势,创造优质可靠的产品。
电子产品加工工艺目前的状况:
(1)电子产品目前的广泛加工工艺技术中,SMT 是加工工艺中最前端也是最必须的加工工艺设备,即使相同的设备加工相同电子产品,有些公司或企业可以良好运作并持续盈利。有些公司或企业无法加工,不良超高,工艺问题很多,导致成本居高以致亏损。同样波峰焊接设备对不同的公司也会面临同样的SMT 设备问题。这种设备的合理应用是一个值得探讨的问题。
(2)在国内的多数电子加工公司中,固胶生产工艺的在双面焊接加工中不仅仅盛行,而且普遍,而在国外或台湾的部分企业当中,这种双面焊接的加工工艺根本无需固胶,只用翻面焊接就可以进行双面焊接,并且无需使用点胶机。显然在电子公司或企业组织的产品加工工艺当中,这种不同方式的规模化生产,取得的效益和结果明显是不同的。
(3)电子产品的可靠性和信赖性在终端应用中一直受到人们的质疑,质量事件源源不断,品质纠纷随时发生,为了提高产品的品质和可靠性,各公司或企业在电子加工工艺环节不但地研究和投入提高品质和可靠性的方法,但取得的效果并不明显。对电子产品而言,这其中最主要可靠性就是来自焊接方面。
(4)电子产品的生产随着社会的发展,2006年7月1日起开始执行的RoHS指令,为国际社会电子产品的加工开辟了新篇章,以前的含铅材料被限制,取而代之的是限制成分的材料,材料和各种费用成本显著上升。但是对要求不严的国内市场,低成本的有铅焊接材料和元器件依然盛行,加上国内大规模集成电路技术的贫乏,国内应用的大规模集成电路几乎全部来自欧美RoHS辖区的RoHS产品。这样在国内就自然产生了一种新的加工工艺―混合生产工艺技术,目前这种混合生产工艺技术已经成为几乎所有公司或企业的瓶颈技术。面临批量的不良产品和成本损耗几乎使所有公司或企业望而却步,但其有铅材料的低成本又令其垂涎欲滴,所以这种混合生产工艺还有待进一步的探索和研究。
2.结果
电子生产工艺包括很多方面,不仅包括设备的使用和调试工艺、设备的引进评估和维护保养工艺、设备的规模化生产工艺、电子生产加工的作业方法工艺、电子生产加工的工具使用工艺,同时还有电子生产加工过程中的焊接工艺等。因所有工艺中焊接性是直接关系到产品的品质可靠性和信赖性的关键因素,因此本论文下面的综合部分主要以电子加工焊接作业为中心探索电子加工工艺的规模化问题和目前国内业界面临的瓶颈问题。
3.讨论
电子生产工艺特别是在规模化问题上目前存在很大的差异性,一是机械设备存在着千差万别,不同公司生产的机台在运动原理上都有一定的差异,并且相互间缺少兼容性;二是不同的电子生产公司使用的制程有着一定的差异,这种差异常常伴随着制程工艺技术能力而出现一定的差别。为此,应该将这些问题作为今后研究的方向。
参考文献
[1]王振红,张常年,张萌萌.电子产品工艺[M].北京:化学工业出版社.
Study on Process of Wave Soldering
XIANFei
(Fiberhome Telecommunication Co., Ltd, Wuhan 430074,China)
Abstract: Although wave soldering is a conventional soldering technology, now it still plays a important role in electronics production. The article introduces theory of wave soldering, at the same time an advanced soldering technology is also mentioned, it allowed through-hole components to be soldered, and protected the SMT components from the wave, unlike in the case of wave soldering. At last the effective way for improving the quality of wave soldering was discussed in terms of the quality control before soldering and the control of manufacturing material and process parameters.
Keywrds: Wave Soldering; Printed Circuit Board; Soldering Flux; Solder; Process Parameters
波峰焊是将熔化的焊料,经电动泵或电磁泵喷流成设计要求的焊料波峰,使预先装有电子元器件的线路板通过焊料波峰,实现元器件焊端或引脚与线路板焊盘之间机械与电气连接的软钎焊。波峰焊用于线路板装联已有20多年的历史,现在已成为一种非常成熟的电子装联工艺技术,目前主要用于通孔插装组件和采用混合组装方式的表面组件的焊接。
1波峰焊工艺技术介绍
波峰焊有单波峰焊和双波峰焊之分。单波峰焊用于SMT时,由于焊料的“遮蔽效应”容易出现较严重的质量问题,如漏焊、桥接和焊缝不充实等缺陷。而双波峰则较好地克服了这个问题,大大减少漏焊、桥接和焊缝不充实等缺陷,因此目前在表面组装中广泛采用双波峰焊工艺和设备。
双波峰焊的结构组成见图1。
波峰锡过程:治具安装喷涂助焊剂系统预热一次波峰二次波峰冷却。下面分别介绍各步内容及作用。
1.1 治具安装
治具安装是指给待焊接的线路板安装夹持的治具,可以限制基板受热形变的程度,防止冒锡现象的发生,从而确保浸锡效果的稳定。
1.2 助焊剂系统
助焊剂系统是保证焊接质量的第一个环节,其主要作用是均匀地涂覆助焊剂,除去线路板和元器件焊接表面的氧化层和防止焊接过程中再氧化。助焊剂的涂覆一定要均匀,尽量不产生堆积,否则将导致焊接短路或开路。
助焊剂系统有多种,包括喷雾式、喷流式和发泡式。目前一般使用喷雾式助焊系统,采用免清洗助焊剂,这是因为免清洗助焊剂中固体含量极少,不挥发物含量只有1/5~1/20。所以必须采用喷雾式助焊系统涂覆助焊剂,同时在焊接系统中加防氧化系统,保证在线路板上得到一层均匀细密很薄的助焊剂涂层,这样才不会因第一个波的擦洗作用和助焊剂的挥发,造成助焊剂量不足,而导致焊料桥接和拉尖。
喷雾式有两种方式:一是采用超声波击打助焊剂,使其颗粒变小,再喷涂到线路板上。二是采用微细喷嘴在一定空气压力下喷雾助焊剂。这种喷涂均匀、粒度小,易于控制,喷雾高度/宽度可自动调节,是今后发展的主流。
1.3预热系统
1.3.1预热系统的作用
1)助焊剂中的溶剂成份在通过预热器时,将会受热挥发。从而避免溶剂成份在经过液面时高温气化造成炸裂的现象发生,最终防止产生锡粒的品质隐患。
2)待浸锡产品搭载的部品在通过预热器时的缓慢升温,可避免过波峰时因骤热产生的物理作用造成部品损伤的情形发生。
3)预热后的部品或端子在经过波峰时不会因自身温度较低的因素大幅度降低焊点的焊接温度,从而确保焊接在规定的时间内达到温度要求。
1.3.2预热方法
波峰焊机中常见的预热方法有三种:空气对流加热、红外加热器加热以及热空气和辐射相结合的方法加热。
1.3.3预热温度
一般预热温度为130~150℃,预热时间为1~3min。预热温度控制得好,可防止虚焊、拉尖和桥接,减小焊料波峰对基板的热冲击,有效地解决焊接过程中线路板翘曲、分层、变形问题。
1.4焊接系统
焊接系统一般采用双波峰。在波峰焊接时,线路板先接触第一个波峰,然后接触第二个波峰。第一个波峰是由窄喷嘴喷流出的“湍流”波峰,流速快,对组件有较高的垂直压力,使焊料对尺寸小、贴装密度高的表面组装元器件的焊端有较好的渗透性;通过湍流的熔融焊料在所有方向擦洗组件表面,从而提高了焊料的润湿性,并克服了由于元器件的复杂形状和取向带来的问题;同时也克服了焊料的“遮蔽效应”湍流波向上的喷射力足以使焊剂气体排出。因此,即使线路板上不设置排气孔也不存在焊剂气体的影响,从而大大减少了漏焊、桥接和焊缝不充实等焊接缺陷,提高了焊接可靠性。经过第一个波峰的产品,因浸锡时间短以及部品自身的散热等因素,浸锡后存在着很多的短路、锡多、焊点光洁度不正常以及焊接强度不足等不良内容。因此,紧接着必须进行浸锡不良的修正,这个动作由喷流面较平较宽阔、波峰较稳定的二级喷流进行。这是一个“平滑”的波峰,流动速度慢,有利于形成充实的焊缝,同时也可有效地去除焊端上过量的焊料,并使所有焊接面上焊料润湿良好,修正了焊接面,消除了可能的拉尖和桥接,获得充实无缺陷的焊缝,最终确保了组件焊接的可靠性。双波峰基本原理如图3。
1.5冷却
浸锡后适当的冷却有助于增强焊点接合强度,同时,冷却后的产品更利于炉后操作人员的作业。因此,浸锡后产品需进行冷却处理。
2使用屏蔽模具波峰焊接工艺技术
由于传统波峰焊接技术无法应对焊接面细间距、高密度贴片元件的焊接,因此一种新方法应运而生:使用屏蔽模具(如图4)遮蔽贴片元件来实现对线路板焊接面插装引线的波峰焊接。
2.1使用屏蔽模具波峰焊接技术的优点
1)实现双面混装PCB波峰焊生产,能大幅提高双面混装PCB生产效率,避免手工焊接存在的质量一致性差的问题。
2)减少粘贴阻焊胶的准备时间,提高生产效率,降低生产成本。
3)产量相当于传统波峰焊。
2.2屏蔽模具材料
1)制作模具必须防静电,常见材料为:铝合金,合成石(国产/进口),纤维板。使用合成石时为避免波峰焊传感器不感应,建议不要使用黑色合成石。
2)制作模具基材厚度。根据机盘反面元件的厚度,选取5~8mm厚度的基材制作模具。
2.3模具工艺尺寸要求
1)模具的外形尺寸:模具的长与宽分别等于PCB的长与宽加上60mm的载具边的宽度且模具宽度必须350mm,具体工艺尺寸如图5。当PCB宽度小于140mm时,可以考虑在一模具同时放置两块PCB焊接。
2)工艺边离边缘8mm,另外两边贴近边缘地方加装10mm宽、10mm高的电木条,以增加模具的强度,减少模具变形。
3)每个加强档条上必须使用螺丝固定,螺丝与螺丝的间隔必需在150mm以下。
4)在模具制作完成后,需在四周且间距100mm以内安装压扣 (固定PCB于模具上),且须注意以下几点:(1)旋转一周不碰触到零件;(2)不影响DIP插件;(3)能将PCB稳固于模具。
5)模具的四个角要开一个R5的倒角。
6)模具上的PCBA在过锡炉时,有些零件受锡波的冲击会产生浮高,因此对一些容易浮高的零件采用压件的方法来解决。目前主要采用的方式:(1)金属铁块压件;(2)模具上安装压扣压件;(3)制作防浮高压件治具。
3提高波峰焊接质量的方法和措施
分别从焊接前的质量控制、生产工艺材料及工艺参数这三个方面探讨了提高波峰焊质量的有 效方法。
3.1 焊接前对线路板质量及元件的控制
3.1.1焊盘设计
1)在设计插件元件焊盘时,焊盘大小尺寸设计应合适。焊盘太大,焊料铺展面积较大,形成的焊点不饱满,而较小的焊盘铜箔表面张力太小,形成的焊点为不浸润焊点。孔径与元件引线的配合间隙太大,容易虚焊,当孔径比引线宽0.05~0.2mm,焊盘直径为孔径的2~2.5倍时,是焊接比较理想的条件。
2)在设计贴片元件焊盘时,应考虑以下几点:
(1)为了尽量去除“阴影效应”,SMD的焊端或引脚应正对着锡流的方向,以利于与锡流的接触,减少虚焊和漏焊。波峰焊时推荐采用的元件布置方向图如图6所示。
(2)波峰焊接不适合于细间距QFP、PLCC、BGA和小间距SOP器件焊接,也就是说在要波峰焊接的这一面尽量不要布置这类元件。
(3)较小的元件不应排在较大元件后,以免较大元件妨碍锡流与较小元件的焊盘接触,造成漏焊。
(4)当采用波峰焊接SOIC等多脚元件时,应于锡流方向最后两个(每边各1)焊脚处设置窃锡焊盘,防止连焊。
(5)类型相似的元件应该以相同的方向排列在板上,使得元件的安装、检查和焊接更容易。例如使所有径向电容的负极朝向板件的右面,使所有双列直插封装(DIP)的缺口标记面向同一方向等等,这样可以加快插装的速度并更易于发现错误。如图7所示,由于A板采用了这种方法,所以能很容易地找到反向电容器,而B板查找则需要用较多时间。实际上一个公司可以对其制造的所有线路板元件方向进行标准化处理,某些板子的布局可能不一定允许这样做,但这应该是一个努力的方向。
3.1.2PCB平整度控制
波峰焊接对线路板的平整度要求很高,一般要求翘曲度要小于0.5mm,如果大于0.5mm要做平整处理。尤其是某些线路板厚度只有1.5mm左右,其翘曲度要求就更高,否则无法保证焊接质量。
3.1.3妥善保存线路板及元件,尽量缩短储存周期
在焊接中,无尘埃、油脂、氧化物的铜箔及元件引线有利于形成合格的焊点,因此线路板及元件应保存在干燥、清洁的环境中,并且尽量缩短储存周期。对于放置时间较长的线路板,其表面一般要做清洁处理,这样可提高可焊性,减少虚焊和桥接,对表面有一定程度氧化的元件引脚,应先除去其表面氧化层。
3.2生产工艺材料的质量控制
在波峰焊接中,使用的生产工艺材料有:助焊剂和焊料,分别讨论如下:
3.2.1助焊剂质量控制
助焊剂在焊接质量的控制上举足轻重,其作用是:
1)除去焊接表面的氧化物;
2)防止焊接时焊料和焊接表面再氧化;
3)降低焊料的表面张力;
4)有助于热量传递到焊接区。目前,波峰焊接所采用的多为免清洗助焊剂。
选择助焊剂时有以下要求:
1)熔点比焊料低;
2)浸润扩散速度比熔化焊料快;
3)粘度和比重比焊料小;
4)在常温下贮存稳定。
3.2.2焊料的质量控制
锡铅焊料在高温下(250℃)不断氧化,使锡锅中锡-铅焊料含锡量不断下降,偏离共晶点,导致流动性差,出现连焊、虚焊、焊点强度不够等质量问题。可采用以下几个方法来解决这个问题:
1) 添加氧化还原剂,使已氧化的SnO还原为Sn,减小锡渣的产生;
2) 不断除去浮渣;
3) 每次焊接前添加一定量的锡;
4) 采用含抗氧化磷的焊料;
5) 采用氮气保护,让氮气把焊料与空气隔绝开来,取代普通气体,这样就避免了浮渣的产生。这种方法要求对设备改型,并提供氮气。
目前最好的方法是在氮气保护的氛围下使用含磷的焊料,可将浮渣率控制在最低程度,焊接缺陷最少、工艺控制最佳。
3.3焊接过程中的工艺参数控制
焊接工艺参数对焊接表面质量的影响比较复杂,并涉及到较多的技术范围。
3.3.1预热温度的控制
预热的作用:
1)使助焊剂中的溶剂充分发挥,以免线路板通过焊锡时,影响线路板的润湿和焊点的形成;
2)使线路板在焊接前达到一定温度,以免受到热冲击产生翘曲变形。一般预热温度控制在180~210℃,预热时间1~3分钟。
3.3.2焊接轨道倾角
轨道倾角对焊接效果的影响较为明显,特别是在焊接高密度SMT器件时更是如此。当倾角太小时,较易出现桥接,特别是焊接中,SMT器件的“遮蔽区”更易出现桥接;而倾角过大,虽然有利于桥接的消除,但焊点吃锡量太小,容易产生虚焊。轨道倾角应控制在5°~8°之间。
3.3.3波峰高度
波峰的高度会因焊接工作时间的推移而有一些变化,应在焊接过程中进行适当的修正,以保证在理想波峰高度进行焊接,以压锡深度为PCB厚度的1/2~1/3为准。
3.3.4焊接温度
焊接温度是影响焊接质量的一个重要的工艺参数。焊接温度过低时,焊料的扩展率、润湿性能变差,使焊盘或元器件焊端由于不能充分的润湿,从而产生虚焊、拉尖、桥接等缺陷;焊接温度过高时,则加速了焊盘、元器件引脚及焊料的氧化,易产生虚焊。焊接温度应控制在250+5℃。
4常见焊接缺陷及排除方法
影响焊接质量的因素是很多的,表1列出的是一些常见缺陷及排除方法,以供参考。
波峰焊接是一项很精细的工作,影响焊接质量的因素也很多,还需要我们更深一步地研究,以期提高波峰焊的焊接质量。
参考文献
[1]吴懿平,鲜飞.电子组装技术[M].武汉:华中科技大学出版社,2006.
[2]张文典.实用表面组装技术(第二版)[M].北京:电子工业出版社,2006.
[3]周德俭.表面组装工艺技术[M].北京:电子工业出版社,2002.